[HDU2829] Lawrence [四边形不等式优化dp]
题面:
思路:
依然是一道很明显的区间dp
我们设$dp\left[i\right]\left[j\right]$表示前$j$个节点分成了$i$块的最小花费,$w\left[i\right]\left[j\right]$表示把闭区间$\left[i,j\right]$放在一起产生的价值
那么转移就比较明显了:
$dp\left[i\right]\left[j\right]=min\left(dp\left[i-1\right]\left[k-1\right]+w\left[k\right]\left[j\right]\right)$
$w$可以用前缀和维护以后$O\left(1\right)$计算,因为:
$w\left[i\right]\left[j\right]=\left(\left(\sum_{k=i}^{j}k\right)^2-\sum_{k=i}^{j}k^2\right)\div 2$
这样我们得到了一个复杂度为$O\left(n^2 m\right)$的dp,但是解决这道题还不够
把w函数的表达式展开可以发现,w满足四边形不等式,因此把里层枚举k的那部分优化掉就好了
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define inf (1ll<<60ll)
using namespace std;
inline ll read(){
ll re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
ll n,m,a[],sum[],sqr[],s[][],dp[][];
ll w(ll l,ll r){
return ((sum[r]-sum[l-])*(sum[r]-sum[l-])-(sqr[r]-sqr[l-]))/2ll;
}
int main(){
ll i,j,k,tmp;
while((n=read())&&(m=read())){
m++;
for(i=;i<=n;i++)
a[i]=read(),sum[i]=sum[i-]+a[i],sqr[i]=sqr[i-]+a[i]*a[i];
for(i=;i<=n;i++) dp[][i]=w(,i),s[][i]=;
for(i=;i<=m;i++){
s[i][n+]=n;
for(j=n;j>i;j--){
dp[i][j]=inf;
for(k=s[i-][j];k<=s[i][j+];k++){
if((tmp=dp[i-][k-]+w(k,j))<dp[i][j]){
dp[i][j]=tmp;s[i][j]=k;
}
}
}
}
printf("%lld\n",dp[m][n]);
}
}
[HDU2829] Lawrence [四边形不等式优化dp]的更多相关文章
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- hdoj 2829 Lawrence 四边形不等式优化dp
dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. # ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...
随机推荐
- Bootstrap 历练实例 - 折叠(Collapse)插件方法
方法 下面是一些折叠(Collapse)插件中有用的方法: 方法 描述 实例 Options:.collapse(options) 激活内容为可折叠元素.接受一个可选的 options 对象. $(' ...
- 创建一个 Dynamic Web Project
准备工作 一.修改 JDK Compliance level 二.创建 Dynamic Web Project Ctrl + N 三.配置网站服务器 tomcat 这里切记不要点击 Finish ,一 ...
- Node 操作MySql数据库
1, 需要安装 MySQL 依赖 => npm i mysql -D 2, 封装一个工具类 mysql-util.js // 引入 mysql 数据库连接依赖 const mysql = re ...
- 21.VUE学习之-操作data里的数组变异方法push&unshit&pop&shift的实例应用讲解
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 精通Spring Boot---使用@ControllerAdvice处理异常
在Spring 3.2中,新增了@ControllerAdvice.@RestControllerAdvice 注解,可以用于定义@ExceptionHandler.@InitBinder.@Mode ...
- 解析XML格式数据
学习解析XML格式的数据前,搭建一个简单的web服务器,在这个服务器上提供xml文本用于练习. 一.搭建Apache服务器 在Apache官网下载编译好的服务器程序,安装.对于Windows来说127 ...
- L1-039 古风排版 (20 分)
L1-039 古风排版 (20 分) 中国的古人写文字,是从右向左竖向排版的.本题就请你编写程序,把一段文字按古风排版. 输入格式: 输入在第一行给出一个正整数N(<),是每一列的字符数.第 ...
- C++ 11 从C++ primer第五版的学习笔记
1. auto (page107) auto 推断会忽略const const int ci = i, & cr = ci; auto b = ci; // b is an int (to ...
- OpenCV学习笔记(六) 滤波器 形态学操作(腐蚀、膨胀等)
转自:OpenCV 教程 另附:计算机视觉:算法与应用(2012),Learning OpenCV(2009) 平滑图像:滤波器 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法.平滑处理的 ...
- U10783 名字被和谐了
U10783 名字被和谐了 题目背景 众所周知,我们称g是a的约数,当且仅当g是正数且a mod g = 0. 众所周知,若g既是a的约数也是b的约数,我们称g是a.b的一个公约数. 众所周知,a.b ...