hihoCoder offer 收割编程练习赛 83 C 播放列表
用 $1,2 ,3 \dots, N$ 代表 $N$ 首歌。设想有 $L$ 个格子排成一排,编号 $1$ 到 $L$ 。考虑将这些数字挨个填进格子里的情形。假设当前要往第 $i$ 个格子里填一个数字(此时前面 $i-1$个坑里都已经填上数字了)若只考虑相邻两个数字不能相同这个条件,则第 $i$ 个格子有 $N-1$ 种填法。不难想到我们还需要知道前 $i-1$ 个格子里填了多少种数字(即多少个不同数字)。
以下描述中,“相邻两个数字不同”这一条件总是满足,不再重复。
以 $f(i,j)$ 表示“前 $i$ 个格子填好之后共有 $j$ 个不同数字”(不必知道这 $j$ 个数字具体是哪些)的方案数。则 $f(i,j)$ 可以转移到 $f(i+1,j)$ 和 $f(i+1,j+1)$,分别对应着第 $i$ 个格子内填余下的 $n-j$ 个数中的某一个和填前 $i$ 个格子中除了第 $i$ 个格子里的数之外的 $j-1$ 个数中的某一个,写成倒推的形式即
\begin{equation*}
f(i, j) = (j-1) f(i-1,j) + (n - j + 1) f(i-1,j-1),
\end{equation*}
边界条件是 $f(1,1) = n$ 。
我们还可以从另一个角度考虑这个问题。
考虑某个合法的播放列表 $a_1, a_2, \dots, a_N$,用 $p_i$ 表示第 $i$ 个新数(即前面没出现过的数)所在的位置(即格子编号)显然有 $p_1 = 1$,$p_2 = 2$,并且 $a_{p_1}, a_{p_2}, \dots, a_{p_N}$ 构成 $1$ 到 $N$ 的一个排列。
考虑映射 $a_1, a_2, \dots, a_N \mapsto a_{p_1}, a_{p_2}, \dots, a_{p_N}$
不难看出,根据上述映射可将所有合法的播放列表分成 $N!$ 类,且每一类中的排列个数相等,将此数目记为 $g(N-1,L-N)$ 。对于 $i = 2, 4, \dots, N$,令 $d_i = p_{i+1} - p_{i}-1$($d_{N+1} = L + 1$)通过枚举 $d_2, \dots, d_N$,我们可以给出 $g(N-1,L-N)$ 的表达式
\begin{equation}
\sum_{\substack{d_2, \dots, d_N \\ \sum_{i=2}^{N}d_i = L - N}} \prod_{i=2}^{N} (i-1)^{d_i}
\end{equation}
那么有
\begin{equation}
g(m, n) = \sum_{\substack{d_1, \dots, d_m \\ \sum_i d_i = n}} \prod_{i=1}^{m} i^{d_i} \label{E:SUM}
\end{equation}
关于 $g(m,n)$,容易得到如下递推式
\begin{equation}
g(m,n) = g(m-1, n) + n g(m, n-1)
\end{equation}
边界条件:$g(1, n) = 1,\,f(m, 0) = 1$
此式的组合意义可以如此理解:第一项 $g(m-1,n)$ 对应于 $d_m = 0$ 的情形,第二项 $n g(m, n-1)$ 对应于 $d_m > 0$ 的情形。
我想知道 \eqref{E:SUM} 式能否进一步化简。
枚举 $d_1, \dots, d_m $ such that $\sum_i d_i = n$,对应着 ordered partition
hihoCoder offer 收割编程练习赛 83 C 播放列表的更多相关文章
- hihoCoder [Offer收割]编程练习赛83 D 生成树问题
题目 从 Kruskal 算法的角度来思考这个问题. 考虑 $n$ 个点的"空图"(即没有边的图). 先将 $m_2$ 条无权值的边加到图中,得到一个森林. 按边权从小到大的顺序枚 ...
- hihocoder [Offer收割]编程练习赛4
描述 最近天气炎热,小Ho天天宅在家里叫外卖.他常吃的一家餐馆一共有N道菜品,价格分别是A1, A2, ... AN元.并且如果消费总计满X元,还能享受优惠.小Ho是一个不薅羊毛不舒服斯基的人,他希望 ...
- hihocoder [Offer收割]编程练习赛61
[Offer收割]编程练习赛61 A:最小排列 给定一个长度为m的序列b[1..m],再给定一个n,求一个字典序最小的1~n的排列A,使得b是A的子序列. 贪心即可,b是A的子序列,把不在b中的元素, ...
- ACM学习历程—Hihocoder [Offer收割]编程练习赛1
比赛链接:http://hihocoder.com/contest/hihointerview3/problem/1 大概有一个月没怎么打算法了.这一场的前一场BC,也打的不是很好.本来Div1的A和 ...
- hihocoder offer收割编程练习赛8 C 数组分拆
思路:(引自bfsoyc的回答:http://hihocoder.com/discuss/question/4160) 动态规划.状态dp[i]表示 前i个数的合法的方案数,转移是 dp[i] = s ...
- hihocoder [Offer收割]编程练习赛18 C 最美和弦(dp)
题目链接:http://hihocoder.com/problemset/problem/1532 题解:一道基础的dp,设dp[i][j][k][l]表示处理到第几个数,当前是哪个和弦错了几次初始x ...
- hihoCoder [Offer收割]编程练习赛3 D子矩阵求和
子矩阵求和 http://hihocoder.com/discuss/question/3005 声明一下: n是和x一起的,m是和y一起的 x是横着的,y是纵着的,x往右为正,y往下为正 (非常反常 ...
- hihocoder [Offer收割]编程练习赛52 D 部门聚会
看了题目的讨论才会做的 首先一点,算每条边(u, v)对于n*(n+1)/2种[l, r]组合的贡献 正着算不如反着算 哪些[l, r]的组合没有包含这条边(u, v)呢 这个很好算 只需要统计u这半 ...
- hihocoder [Offer收割]编程练习赛14
A.小Hi和小Ho的礼物 谜之第1题,明明是第1题AC率比C还要低.题目是求在n个不同重量袋子选4袋,2袋给A,2袋给B,使2人获得重量相同,求问方案数. 我也是一脸懵b...o(n2)暴力枚举发现把 ...
随机推荐
- iptables 防火墙详解
一:前言 防火墙,其实说白了讲,就是用于实现Linux下访问控制的功能的,它分为硬件的或者软件的防火墙两种.无论是在哪个网络中,防火墙工作的地方一定是在网络的边缘.而我们的任务就是需要去定义到底防 ...
- FW 数据库迁移之从oracle 到 MySQL
方式一: 手动方式导入导出 手动的方式导入, 就是操作步骤会比较繁琐一些. 对Table 的结构和数据: 1. 使用 SQL Developer 把 oracle 的 table 的schema 和 ...
- 求最大公约数和最小公倍数_python
"""写两个函数,分别求两个整数的最大公约数和最小公倍数,调用这两个函数,并输出结果.两个整数由键盘输入.""" ''' 设两个整数u和v, ...
- jquery的ajax请求
加载页面内容,如果不加选择器,会加载整个页面内容 加选择器会获取选择器内容 例如: <script> //可以获取json格式的文件 $.ajax({ type:"get&quo ...
- C/C++程序基础 (四)字符串
字符串与数字转化 数字转换字符串:itoa, ltoa, ultoa ; gcvt, ecvt, fcvt 字符串转数字:atoi, atof(双精度浮点), atol:strtod(双精度浮点), ...
- pm2 服务器命令
1..配置日志文件路径 命令:pm2 start /home/admin/node/fotonIp/bin/www --name ip -i 4 -o "/app/node/logs ...
- MySQL主从复制原理及配置过程
一.Mysql数据库的主从复制原理过程: (多实例的安装请参考我的另一篇文章:https://www.cnblogs.com/Template/p/9258500.html) Mysql的主从复制是一 ...
- vue.js 三(数据交互)isomorphic-fetch
至于fetch的介绍,在这里就不多说了,官方和网络上的说明不少 之前使用jquery的Ajax朋友,可以尝试一下使用一下这个新的api 推荐使用isomorphic-fetch,兼容Node.js和浏 ...
- React学习记录二
环境基本弄清楚了以后,开始总会写个hello world什么的,开发做了这么久了,就跳过这一步吧. 还是从打开vscode说起吧,这里文件菜单打开一个文件夹Demos,查看菜单打开集成终端,也可以使用 ...
- JZOJ 4272. 【NOIP2015模拟10.28B组】序章-弗兰德的秘密
272. [NOIP2015模拟10.28B组]序章-弗兰德的秘密 (File IO): input:frand.in output:frand.out Time Limits: 1000 ms M ...