探讨2018年最受欢迎的15顶级Python库!
近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学、数据可视化、深度学习和机器学习。如果本文有哪些遗漏,你可以在评论区补充。
图 1:根据 GitHub star 和贡献评选出的 2018 顶级 Python 库。形状大小与贡献者数量成正比
以下为 2018 年排名前 15 的 Python 库(数据截止 2018 年 12 月 16 日):
1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765)
“TensorFlow 是一个使用数据流图进行数值计算的开源软件库。图形节点表示数学运算,而图形边缘表示在它们之间流动的多维数据阵列(张量)。这种灵活的体系结构使用户可以将计算部署到桌面、服务器或移动设备中的一个或多个 CPU/GPU,而无需重写代码。 ”
GitHub 地址:
https://github.com/tensorflow/tensorflow
2 pandas(贡献者:1360,贡献:18441,Stars :17388)
“pandas 是一个 Python 包,、供快速,灵活和富有表现力的数据结构,旨在让”关系“或”标记“数据使用既简单又直观。它的目标是成为用 Python 进行实际,真实数据分析的基础高级构建块。”
GitHub 地址:
https://github.com/pandas-dev/pandas
3 scikit-learn(贡献者:1218,贡献者:23509,Stars :32326)
“scikit-learn 是一个基于 NumPy,SciPy 和 matplotlib 的机器学习 Python 模块。它为数据挖掘和数据分析提供了简单而有效的工具。SKLearn 所有人都可用,并可在各种环境中重复使用。
GitHub 地址:
https://github.com/scikit-learn/scikit-learn
4 PyTorch(贡献者:861,贡献:15362,Stars:22763)
“PyTorch 是一个 Python 包,提供两个高级功能:
- 具有强大的 GPU 加速度的张量计算(如 NumPy)
- 基于磁带的自动编程系统构建的深度神经网络
你可以重复使用自己喜欢的 Python 软件包,如 NumPy,SciPy 和 Cython,以便在需要时扩展 PyTorch。”
GitHub 地址:
https://github.com/pytorch/pytorch
5 Matplotlib(贡献者:778,贡献:28094,Stars :8362)
“Matplotlib 是一个 Python 2D 绘图库,可以生成各种可用于出版品质的硬拷贝格式和跨平台交互式环境数据。Matplotlib 可用于 Python 脚本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 应用程序服务器和各种图形用户界面工具包。”
GitHub 地址:
https://github.com/matplotlib/matplotlib
6 Keras(贡献者:856,贡者:4936,Stars :36450)
“Keras 是一个高级神经网络 API,用 Python 编写,能够在 TensorFlow,CNTK 或 Theano 之上运行。它旨在实现快速实验,能够以最小的延迟把想法变成结果,这是进行研究的关键。”
GitHub 地址:
https://github.com/keras-team/keras
7 NumPy(贡献者:714,贡献:19399,Stars:9010)
“NumPy 是使用 Python 进行科学计算所需的基础包。它提供了强大的 N 维数组对象,复杂的(广播)功能,集成 C / C ++ 和 Fortran 代码的工具以及有用的线性代数,傅里叶变换和随机数功能。
GitHub 地址:
https://github.com/numpy/numpy
8 SciPy(贡献者:676,贡献:20180,Stars:5188)
“SciPy(发音为”Sigh Pie“)是数学、科学和工程方向的开源软件,包含统计、优化、集成、线性代数、傅立叶变换、信号和图像处理、ODE 求解器等模块。”
GitHub 地址:
https://github.com/scipy/scipy
9 Apache MXNet(贡献者:653,贡献:9060,Stars:15812)
“Apache MXNet(孵化)是一个深度学习框架,旨在提高效率和灵活性,让你可以混合符号和命令式编程,以最大限度地提高效率和生产力。 MXNet 的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。”
GitHub 地址:
https://github.com/apache/incubator-mxnet
10 Theano(贡献者:333,贡献:28060,Stars :8614)
“Theano 是一个 Python 库,让你可以有效地定义、优化和评估涉及多维数组的数学表达式。它可以使用 GPU 并实现有效的符号区分。”
GitHub 地址:
https://github.com/Theano/Theano
11 Bokeh(贡献者:334,贡献:17395,Stars :8649)
“Bokeh 是一个用于 Python 的交互式可视化库,可以在现代 Web 浏览器中实现美观且有意义的数据视觉呈现。使用 Bokeh,你可以快速轻松地创建交互式图表、仪表板和数据应用程序。”
GitHub 地址:
https://github.com/bokeh/bokeh
12 XGBoost(贡献者:335,贡献:3557,Stars:14389)
“XGBoost 是一个优化的分布式梯度增强库,旨在变得高效、强大、灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost 提供了梯度提升决策树(也称为 GBDT,GBM),可以快速准确地解决许多数据科学问题,可以在主要的分布式环境(Hadoop,SGE,MPI)上运行相同的代码,并可以解决数十亿个示例之外的问题。”
GitHub 地址:
https://github.com/dmlc/xgboost
13 Gensim(贡献者:301,贡献:3687,Stars :8295)
“Gensim 是一个用于主题建模、文档索引和大型语料库相似性检索的 Python 库,目标受众是自然语言处理(NLP)和信息检索(IR)社区。”
GitHub 地址:
https://github.com/RaRe-Technologies/gensim
14 Scrapy(贡献者:297,贡献:6808,Stars :30507)
“Scrapy 是一种快速的高级 Web 爬行和 Web 抓取框架,用于抓取网站并从其页面中提取结构化数据。它可用于从数据挖掘到监控和自动化测试的各种用途。”
GitHub 地址:
https://github.com/scrapy/scrapy
15 Caffe(贡献者:270,贡献:4152,Stars :26531)
“Caffe 是一个以表达、速度和模块化为基础的深度学习框架,由伯克利人工智能研究(BAIR)/ 伯克利视觉与学习中心(BVLC)和社区贡献者开发。”
GitHub 地址:
https://github.com/BVLC/caffe
以上就是2018年最受欢迎的15个库了,不知有没有你的菜喔!希望本文对所列出的库对你有所帮助!
如果大家在学习Python的路上,或者打算学习Python需要学习资料,可以就请你571799375,群里学习资料免费赠送给大家喔!
本文来自网络,如有侵权,请联系小编删除!
探讨2018年最受欢迎的15顶级Python库!的更多相关文章
- 最受欢迎的 15 大 Python 库(2017)
核心库 1. NumPy (提交数: 15980, 贡献者数: 522) 当开始处理Python中的科学任务,Python的SciPy Stack肯定可以提供帮助,它是专门为Python中科学计算而设 ...
- 数据处理一条龙!这15个Python库不可不知
如果你是一名数据科学家或数据分析师,或者只是对这一行业感兴趣,那下文中这些广受欢迎且非常实用的Python库你一定得知道. 从数据收集.清理转化,到数据可视化.图像识别和网页相关,这15个Python ...
- 最受欢迎的15个Python开源框架
GitHub中15个最受欢迎的Python开源框架.这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等. 1.Django: Python Web应用开发框架 Django 应 ...
- 2018年排名前20的数据科学Python库
Python 在解决数据科学任务和挑战方面继续处于领先地位.业已证明最有帮助的Python库,我们选择 20 多个库,因为其中一些库是相互替代的,可以解决相同的问题.因此,我们将它们放在同一个分组. ...
- 2016年度最受欢迎的100个 Java 库
[编者按]本文作者为 Henn Idan,主要介绍基于 GitHub 中的数据分析,得出的2016年度最受欢迎的100个 Java 库.本文系国内 ITOM 管理平台 OneAPM 编译呈现. 谁拔得 ...
- 15行python代码,帮你理解令牌桶算法
本文转载自: http://www.tuicool.com/articles/aEBNRnU 在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法 ...
- 2017年排名前15的数据科学python库
2017年排名前15的数据科学python库 2017-05-22 Python程序员 Python程序员 Python程序员 微信号 pythonbuluo 功能介绍 最专业的Python社区,有每 ...
- 尚学python课程---15、python进阶语法
尚学python课程---15.python进阶语法 一.总结 一句话总结: python使用东西要引入库,比如 json 1.python如何创建类? class ClassName: :以冒号结尾 ...
- 第7.15节 Python中classmethod定义的类方法详解
第7.15节 Python中classmethod定义的类方法详解 类中的方法,除了实例方法外,还有两种方法,分别是类方法和静态方法.本节介绍类方法的定义和使用. 一. 类方法的定义 在类中定 ...
随机推荐
- CodeForces - 507B - Amr and Pins(计算几何)
Amr loves Geometry. One day he came up with a very interesting problem. Amr has a circle of radius r ...
- RDL Web报表抛出ReportServerException,已取消该操作
::, RsBase() [ERROR] - Microsoft.Reporting.WebForms.ReportServerException: 已取消该操作. ---> System.Op ...
- P4876 近似排列计数50
时间限制:1s 内存限制:256MB [问题描述] 对于一个1-n的排列,如果满足第i个数|ai-i|<=k,则称该排列为K-近似排列. 现在排列的若干位置已经确定,你需要计算剩下的数有多少种排 ...
- ribbon hystrix仪表盘
Circuit Breaker: Hystrix Dashboard (断路器:hystrix 仪表盘) 基于service-ribbon 改造下: pom.xml加入: <dependency ...
- ES6学习(1)
let 和 const 命令 ES6 新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效.for循环的计数器,就很合适使用let命令. 下面的代码 ...
- iOS-浅谈runtime运行时机制02-runtime简单使用
http://blog.csdn.net/jiajiayouba/article/details/44201079 由于OC是运行时语言,只有在程序运行时,才会去确定对象的类型,并调用类与对象相应的方 ...
- 洛谷 P2324 [SCOI2005]骑士精神
题目描述 输入输出格式 输入格式: 第一行有一个正整数T(T<=10),表示一共有N组数据.接下来有T个5×5的矩阵,0表示白色骑士,1表示黑色骑士,*表示空位.两组数据之间没有空行. 输出格式 ...
- BZOJ 3712: [PA2014]Fiolki 倍增+想法
3712: [PA2014]Fiolki Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 437 Solved: 115[Submit][Status ...
- Array - Two Sum
import java.util.HashMap; import java.util.Map; /** * 分析: * 普通实现-嵌套循环两次,时间O(n2),空间O(1) * 复杂实现-循环一次,时 ...
- nginx之HTTP模块配置
listen 指令只能使用与server字段里 如果本地调用可以监听本地Unix套接字文件,性能更加,因为不用走内核网络协议栈 listen unix:/var/run/nginx.sock; ...