近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学、数据可视化、深度学习和机器学习。如果本文有哪些遗漏,你可以在评论区补充。

图 1:根据 GitHub star 和贡献评选出的 2018 顶级 Python 库。形状大小与贡献者数量成正比

以下为 2018 年排名前 15 的 Python 库(数据截止 2018 年 12 月 16 日):

1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765)

“TensorFlow 是一个使用数据流图进行数值计算的开源软件库。图形节点表示数学运算,而图形边缘表示在它们之间流动的多维数据阵列(张量)。这种灵活的体系结构使用户可以将计算部署到桌面、服务器或移动设备中的一个或多个 CPU/GPU,而无需重写代码。 ”

GitHub 地址:

https://github.com/tensorflow/tensorflow

2 pandas(贡献者:1360,贡献:18441,Stars :17388)

“pandas 是一个 Python 包,、供快速,灵活和富有表现力的数据结构,旨在让”关系“或”标记“数据使用既简单又直观。它的目标是成为用 Python 进行实际,真实数据分析的基础高级构建块。”

GitHub 地址:

https://github.com/pandas-dev/pandas

3 scikit-learn(贡献者:1218,贡献者:23509,Stars :32326)

“scikit-learn 是一个基于 NumPy,SciPy 和 matplotlib 的机器学习 Python 模块。它为数据挖掘和数据分析提供了简单而有效的工具。SKLearn 所有人都可用,并可在各种环境中重复使用。

GitHub 地址:

https://github.com/scikit-learn/scikit-learn

4 PyTorch(贡献者:861,贡献:15362,Stars:22763)

“PyTorch 是一个 Python 包,提供两个高级功能:

  • 具有强大的 GPU 加速度的张量计算(如 NumPy)
  • 基于磁带的自动编程系统构建的深度神经网络

你可以重复使用自己喜欢的 Python 软件包,如 NumPy,SciPy 和 Cython,以便在需要时扩展 PyTorch。”

GitHub 地址:

https://github.com/pytorch/pytorch

5 Matplotlib(贡献者:778,贡献:28094,Stars :8362)

“Matplotlib 是一个 Python 2D 绘图库,可以生成各种可用于出版品质的硬拷贝格式和跨平台交互式环境数据。Matplotlib 可用于 Python 脚本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 应用程序服务器和各种图形用户界面工具包。”

GitHub 地址:

https://github.com/matplotlib/matplotlib

6 Keras(贡献者:856,贡者:4936,Stars :36450)

“Keras 是一个高级神经网络 API,用 Python 编写,能够在 TensorFlow,CNTK 或 Theano 之上运行。它旨在实现快速实验,能够以最小的延迟把想法变成结果,这是进行研究的关键。”

GitHub 地址:

https://github.com/keras-team/keras

7 NumPy(贡献者:714,贡献:19399,Stars:9010)

“NumPy 是使用 Python 进行科学计算所需的基础包。它提供了强大的 N 维数组对象,复杂的(广播)功能,集成 C / C ++ 和 Fortran 代码的工具以及有用的线性代数,傅里叶变换和随机数功能。

GitHub 地址:

https://github.com/numpy/numpy

8 SciPy(贡献者:676,贡献:20180,Stars:5188)

“SciPy(发音为”Sigh Pie“)是数学、科学和工程方向的开源软件,包含统计、优化、集成、线性代数、傅立叶变换、信号和图像处理、ODE 求解器等模块。”

GitHub 地址:

https://github.com/scipy/scipy

9 Apache MXNet(贡献者:653,贡献:9060,Stars:15812)

“Apache MXNet(孵化)是一个深度学习框架,旨在提高效率和灵活性,让你可以混合符号和命令式编程,以最大限度地提高效率和生产力。 MXNet 的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。”

GitHub 地址:

https://github.com/apache/incubator-mxnet

10 Theano(贡献者:333,贡献:28060,Stars :8614)

“Theano 是一个 Python 库,让你可以有效地定义、优化和评估涉及多维数组的数学表达式。它可以使用 GPU 并实现有效的符号区分。”

GitHub 地址:

https://github.com/Theano/Theano

11 Bokeh(贡献者:334,贡献:17395,Stars :8649)

“Bokeh 是一个用于 Python 的交互式可视化库,可以在现代 Web 浏览器中实现美观且有意义的数据视觉呈现。使用 Bokeh,你可以快速轻松地创建交互式图表、仪表板和数据应用程序。”

GitHub 地址:

https://github.com/bokeh/bokeh

12 XGBoost(贡献者:335,贡献:3557,Stars:14389)

“XGBoost 是一个优化的分布式梯度增强库,旨在变得高效、强大、灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost 提供了梯度提升决策树(也称为 GBDT,GBM),可以快速准确地解决许多数据科学问题,可以在主要的分布式环境(Hadoop,SGE,MPI)上运行相同的代码,并可以解决数十亿个示例之外的问题。”

GitHub 地址:

https://github.com/dmlc/xgboost

13 Gensim(贡献者:301,贡献:3687,Stars :8295)

“Gensim 是一个用于主题建模、文档索引和大型语料库相似性检索的 Python 库,目标受众是自然语言处理(NLP)和信息检索(IR)社区。”

GitHub 地址:

https://github.com/RaRe-Technologies/gensim

14 Scrapy(贡献者:297,贡献:6808,Stars :30507)

“Scrapy 是一种快速的高级 Web 爬行和 Web 抓取框架,用于抓取网站并从其页面中提取结构化数据。它可用于从数据挖掘到监控和自动化测试的各种用途。”

GitHub 地址:

https://github.com/scrapy/scrapy

15 Caffe(贡献者:270,贡献:4152,Stars :26531)

“Caffe 是一个以表达、速度和模块化为基础的深度学习框架,由伯克利人工智能研究(BAIR)/ 伯克利视觉与学习中心(BVLC)和社区贡献者开发。”

GitHub 地址:

https://github.com/BVLC/caffe

以上就是2018年最受欢迎的15个库了,不知有没有你的菜喔!希望本文对所列出的库对你有所帮助!

如果大家在学习Python的路上,或者打算学习Python需要学习资料,可以就请你571799375,群里学习资料免费赠送给大家喔!

本文来自网络,如有侵权,请联系小编删除!

 

探讨2018年最受欢迎的15顶级Python库!的更多相关文章

  1. 最受欢迎的 15 大 Python 库(2017)

    核心库 1. NumPy (提交数: 15980, 贡献者数: 522) 当开始处理Python中的科学任务,Python的SciPy Stack肯定可以提供帮助,它是专门为Python中科学计算而设 ...

  2. 数据处理一条龙!这15个Python库不可不知

    如果你是一名数据科学家或数据分析师,或者只是对这一行业感兴趣,那下文中这些广受欢迎且非常实用的Python库你一定得知道. 从数据收集.清理转化,到数据可视化.图像识别和网页相关,这15个Python ...

  3. 最受欢迎的15个Python开源框架

    GitHub中15个最受欢迎的Python开源框架.这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等. 1.Django: Python Web应用开发框架 Django 应 ...

  4. 2018年排名前20的数据科学Python库

    Python 在解决数据科学任务和挑战方面继续处于领先地位.业已证明最有帮助的Python库,我们选择 20 多个库,因为其中一些库是相互替代的,可以解决相同的问题.因此,我们将它们放在同一个分组. ...

  5. 2016年度最受欢迎的100个 Java 库

    [编者按]本文作者为 Henn Idan,主要介绍基于 GitHub 中的数据分析,得出的2016年度最受欢迎的100个 Java 库.本文系国内 ITOM 管理平台 OneAPM 编译呈现. 谁拔得 ...

  6. 15行python代码,帮你理解令牌桶算法

    本文转载自: http://www.tuicool.com/articles/aEBNRnU   在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法 ...

  7. 2017年排名前15的数据科学python库

    2017年排名前15的数据科学python库 2017-05-22 Python程序员 Python程序员 Python程序员 微信号 pythonbuluo 功能介绍 最专业的Python社区,有每 ...

  8. 尚学python课程---15、python进阶语法

    尚学python课程---15.python进阶语法 一.总结 一句话总结: python使用东西要引入库,比如 json 1.python如何创建类? class ClassName: :以冒号结尾 ...

  9. 第7.15节 Python中classmethod定义的类方法详解

    第7.15节  Python中classmethod定义的类方法详解 类中的方法,除了实例方法外,还有两种方法,分别是类方法和静态方法.本节介绍类方法的定义和使用. 一.    类方法的定义 在类中定 ...

随机推荐

  1. 爬虫(BeautifulSoup4)——安装

    环境:python3 win10 安装这个心好累啊!网上找了很多办法都安装不成功,后来换了几个安装包,最后4.4.1版本的包终于能用了! https://blog.csdn.net/www520507 ...

  2. 线程池ThreadPoolExecutor的学习

    我们知道,ExecutorService是一个抽象出线程池的一个接口,然后我们在使用线程池的时候,用的是Executors工具类中的一系列newCachedThreadPool() 等类似的方法,这些 ...

  3. postgresql 存储过程动态插入数据 2

    最近学习postgresql,正一个小活要用上,所以就开始学习了!然而,学习的过程极其艰辛,但却也充满了乐趣. 一般来说数据库的操作不外如何增,删,改,查,而首要的就是要添加数据到数据库中,因为以前的 ...

  4. 帝国empirecms去除后台登陆认证码

    打开文件:\e\config\config.php 找到代码 $ecms_config['esafe']['loginauth']='abc'; 把值设为空即可,即改为 $ecms_config['e ...

  5. <Android Framework 之路>多线程

    多线程编程 JAVA多线程方式 1. 继承Thread线程,实现run方法 2. 实现Runnable接口 JAVA单继承性,当我们想将一个已经继承了其他类的子类放到Thread中时,单继承的局限就体 ...

  6. 【Python图像特征的音乐序列生成】生成伴奏旋律(附部分代码)

    做了半天做的都是一些细枝末节的东西,嗨呀. 伴奏旋律是Ukulele和弦,MIDI发音乐器是Guitar.在弹唱的时候,Ukulele和弦就是伴奏. 我们以创建<成都>伴奏为例: 节奏型: ...

  7. ASP.NET(Web Form)绘制图表 -- Google Chart 三部曲

    ASP.NET(Web Form)绘制图表 -- Google Chart 三部曲 ASP.NET(Web Form)绘制图表 -- Google Chart 三部曲 1.  网页绘制图表 Googl ...

  8. Contour Features 边界特征

    查找轮廓 findContours   cv2.findContours(image, mode, method[, contours[, hierarchy[, offset]]]) → image ...

  9. Array - Two Sum

    import java.util.HashMap; import java.util.Map; /** * 分析: * 普通实现-嵌套循环两次,时间O(n2),空间O(1) * 复杂实现-循环一次,时 ...

  10. js 获取当前年月日时分秒星期

    $("#aa").click(function () { var date = new Date(); this.year = date.getFullYear(); this.m ...