找最长的连接的点的数量。用tarjan缩点,思考可知每一个强连通分量里的点要么都选,要么都不选(走别的路),可以动规解决。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;
const int mxn=;
int top,stack[mxn];
bool inst[mxn];
int cnt,dnow;
int dfn[mxn],low[mxn];
int belone[mxn];
int ptcnt[mxn];
int dp[mxn];
vector<int> e[mxn];//邻接表
vector<int> pt[mxn];//缩点后的点集
void clear(){
cnt=;dnow=;top=;
memset(dfn,-,sizeof(dfn));
memset(inst,false,sizeof(inst));
memset(dp,,sizeof dp);
memset(ptcnt,,sizeof ptcnt);
memset(belone,,sizeof belone);
for(int i=;i<mxn;i++) e[i].clear();
for(int i=;i<mxn;i++) pt[i].clear();
}
int n,m;
void tarjan(int s){
int v=,i;
dfn[s]=++dnow;
low[s]=dfn[s];
inst[s]=true;
stack[++top]=s;
int si=e[s].size();
for(i=;i<si;i++){
v=e[s][i];
if(dfn[v]==-){
tarjan(v);
low[s]=min(low[v],low[s]);
}
else if(inst[v]){
low[s]=min(dfn[v],low[s]);
}
}
if(dfn[s]==low[s]){
cnt++;
do{
v=stack[top--];
belone[v]=cnt;
inst[v]=false;
}while(s!=v);
}
return;
}
int find(int x){//动规
if(pt[x].size()==)return dp[x]=ptcnt[x];
if(dp[x])return dp[x];
int mx=;
for(int i=;i<pt[x].size();i++){
mx=max(mx,find(pt[x][i]));
}
dp[x]=mx+ptcnt[x];
return dp[x];
}
void solve(){//统计缩完点之后的连通情况
int i,j,k;
for(i=;i<=n;i++){
ptcnt[belone[i]]++;
for(j=;j<e[i].size();j++){
int v=e[i][j];
if(belone[i]!=belone[v])
pt[belone[i]].push_back(belone[v]);
}
}
int ans=;
for(i=;i<=cnt;i++)ans=max(ans,find(i));
printf("%d\n",ans);
return;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
clear();
int i,j;
int u,v;
for(i=;i<=m;i++){
scanf("%d%d",&u,&v);
e[u].push_back(v);
}
for(i=;i<=n;i++){//缩点
if(dfn[i]==-)tarjan(i);
}
solve();
}
return ;
}

UVa 11234 The Largest Clique的更多相关文章

  1. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  2. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  3. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  4. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  5. UVA 1324 The Largest Clique 最大团(强连通分量,变形)

    题意:给一个有向图,要求找出一些点,使得这些点中的任意点对,要么可以互通,要么单向可达. 思路:最低只要求单向可达即可,即a->b都可以算进去. 强连通分量内的点肯定是满足要求的,可以全选,但是 ...

  6. uva 11324 The Largest Clique (Tarjan+记忆化)

    /*每个环 要么不选 要么全选 可缩点 就得到一个GAD图 然后搞搞算出最大路径*/ #include<iostream> #include<cstdio> #include& ...

  7. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  8. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  9. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

随机推荐

  1. Linux下重要日志及查看方式

    1.Linux下重要日志文件介绍 /var/log/boot.log 该文件记录了系统在引导过程中发生的事件,就是Linux系统开机自检过程显示的信息,如图1所示: 图1 /var/log/boot. ...

  2. 十三、MySQL WHERE 子句

    MySQL WHERE 子句 我们知道从 MySQL 表中使用 SQL SELECT 语句来读取数据. 如需有条件地从表中选取数据,可将 WHERE 子句添加到 SELECT 语句中. 语法 以下是 ...

  3. php扩展开发-函数

    我们首先找到快速上手文章里面关于函数定义的代码,以此说明然后开发PHP的函数 //php_myext.h PHP_FUNCTION(myext_hello);//函数申明,所有在myext.c文件定义 ...

  4. python-字符串数据类型内置方法

    字符串类型内置方法 (str) 用途:描述性质的东西,如人的名字.单个爱好.地址.国家等 定义:使用单引号(' ').双引号(" ").三单引号(''' ''').三双引号(&qu ...

  5. python函数调用顺序、高阶函数、嵌套函数、闭包详解

    一:函数调用顺序:其他高级语言类似,Python 不允许在函数未声明之前,对其进行引用或者调用错误示范: def foo(): print 'in the foo' bar() foo() 报错: i ...

  6. 传送流(TS)的基础知识

    数字电视的TS包和TS流的组成和功能 综合考虑几下几个因素: (1)包的长度不能过短,否则包头开销所占比例过大, 导致传输效率下降 (2)包的长度不能过长,否则在丢失同步的情况下恢复同步的 周期过长, ...

  7. Redis实现之链表

    链表 链表提供了高效的节点重排能力,以及顺序性的节点访问顺序,并且可以通过增删节点来灵活地调整链表的长度.作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用的C语言并没有内置这 ...

  8. SVM python小样例

    SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化(SMO)算法在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上基于最大间隔的分割数据优点:泛化错误率低, ...

  9. 浅谈javascript的运行机制

    积累一下这几天学的,记录一下: 一.为什么JavaScript是单线程? JavaScript语言的一大特点就是单线程,也就是说,同一个时间只能做一件事.那么,为什么JavaScript不能有多个线程 ...

  10. SSRS 制作报表时报错: 超时时间已到。在操作完成之前超时时间已过或服务器未响应。

    转载注明出处,原文地址:http://www.cnblogs.com/zzry/p/5718739.html  在用ssrs 制作报表时报如下错误 错误信息截图: 看到如上错误第一个想到的解决方法就是 ...