http://developer.178.com/201103/94954661733.html

一、点、直线和多边形
我们知道数学(具体的说,是几何学)中有点、直线和多边形的概念,但这些概念在计算机中会有所不同。
数学上的点,只有位置,没有大小。但在计算机中,无论计算精度如何提高,始终不能表示一个无穷小的点。另一方面,无论图形输出设备(例如,显示器)如何精确,始终不能输出一个无穷小的点。一般情况下,OpenGL中的点将被画成单个的像素(像素的概念,请自己搜索之~),虽然它可能足够小,但并不会是无穷小。同一像素上,OpenGL可以绘制许多坐标只有稍微不同的点,但该像素的具体颜色将取决于OpenGL的实现。当然,过度的注意细节就是钻牛角尖,我们大可不必花费过多的精力去研究“多个点如何画到同一像素上”。
同样的,数学上的直线没有宽度,但OpenGL的直线则是有宽度的。同时,OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为,OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。
多边形是由多条线段首尾相连而形成的闭合区域。OpenGL规定,一个多边形必须是一个“凸多边形”(其定义为:多边形内任意两点所确定的线段都在多边形内,由此也可以推导出,凸多边形不能是空心的)。多边形可以由其边的端点(这里可称为顶点)来确定。(注意:如果使用的多边形不是凸多边形,则最后输出的效果是未定义的——OpenGL为了效率,放宽了检查,这可能导致显示错误。要避免这个错误,尽量使用三角形,因为三角形都是凸多边形)

可以想象,通过点、直线和多边形,就可以组合成各种几何图形。甚至于,你可以把一段弧看成是很多短的直线段相连,这些直线段足够短,以至于其长度小于一个像素的宽度。这样一来弧和圆也可以表示出来了。通过位于不同平面的相连的小多边形,我们还可以组成一个“曲面”。

二、在OpenGL中指定顶点
由以上的讨论可以知道,“点”是一切的基础。
如何指定一个点呢?OpenGL提供了一系列函数。它们都以glVertex开头,后面跟一个数字和1~2个字母。例如:
glVertex2d
glVertex2f
glVertex3f
glVertex3fv
等等。
数字表示参数的个数,2表示有两个参数,3表示三个,4表示四个(我知道有点罗嗦~)。
字母表示参数的类型,s表示16位整数(OpenGL中将这个类型定义为GLshort),
                   i表示32位整数(OpenGL中将这个类型定义为GLint和GLsizei),
                   f表示32位浮点数(OpenGL中将这个类型定义为GLfloat和GLclampf),
                   d表示64位浮点数(OpenGL中将这个类型定义为GLdouble和GLclampd)。
                   v表示传递的几个参数将使用指针的方式,见下面的例子。
这些函数除了参数的类型和个数不同以外,功能是相同的。例如,以下五个代码段的功能是等效的:
(一)glVertex2i(1, 3);
(二)glVertex2f(1.0f, 3.0f);
(三)glVertex3f(1.0f, 3.0f, 0.0f);
(四)glVertex4f(1.0f, 3.0f, 0.0f, 1.0f);
(五)GLfloat VertexArr3[] = {1.0f, 3.0f, 0.0f};
      glVertex3fv(VertexArr3);
以后我们将用glVertex*来表示这一系列函数。
注意:OpenGL的很多函数都是采用这样的形式,一个相同的前缀再加上参数说明标记,这一点会随着学习的深入而有更多的体会。

三、开始绘制
假设现在我已经指定了若干顶点,那么OpenGL是如何知道我想拿这些顶点来干什么呢?是一个一个的画出来,还是连成线?或者构成一个多边形?或者做其它什么事情?
为了解决这一问题,OpenGL要求:指定顶点的命令必须包含在glBegin函数之后,glEnd函数之前(否则指定的顶点将被忽略)。并由glBegin来指明如何使用这些点。
例如我写:
glBegin(GL_POINTS);
     glVertex2f(0.0f, 0.0f);
     glVertex2f(0.5f, 0.0f);
glEnd();
则这两个点将分别被画出来。如果将GL_POINTS替换成GL_LINES,则两个点将被认为是直线的两个端点,OpenGL将会画出一条直线。
我们还可以指定更多的顶点,然后画出更复杂的图形。
另一方面,glBegin支持的方式除了GL_POINTS和GL_LINES,还有GL_LINE_STRIP,GL_LINE_LOOP,GL_TRIANGLES,GL_TRIANGLE_STRIP,GL_TRIANGLE_FAN等,每种方式的大致效果见下图:

声明:该图片来自www.opengl.org,该图片是《OpenGL编程指南》一书的附图,由于该书的旧版(第一版,1994年)已经流传于网络,我希望没有触及到版权问题。

我并不准备在glBegin的各种方式上大作文章。大家可以自己尝试改变glBegin的方式和顶点的位置,生成一些有趣的图案。

程序代码:
void myDisplay(void)
{
     glClear(GL_COLOR_BUFFER_BIT);
     glBegin( /* 在这里填上你所希望的模式 */ );
        /* 在这里使用glVertex*系列函数 */
        /* 指定你所希望的顶点位置 */
     glEnd();
     glFlush();
}
把这段代码改成你喜欢的样子,然后用它替换第一课中的myDisplay函数,编译后即可运行。

两个例子
例一、画一个圆
/*
正四边形,正五边形,正六边形,……,直到正n边形,当n越大时,这个图形就越接近圆
当n大到一定程度后,人眼将无法把它跟真正的圆相区别
这时我们已经成功的画出了一个“圆”
(注:画圆的方法很多,这里使用的是比较简单,但效率较低的一种)
试修改下面的const int n的值,观察当n=3,4,5,8,10,15,20,30,50等不同数值时输出的变化情况
将GL_POLYGON改为GL_LINE_LOOP、GL_POINTS等其它方式,观察输出的变化情况
*/
#include 
const int n = 20;
const GLfloat R = 0.5f;
const GLfloat Pi = 3.1415926536f;
void myDisplay(void)
{
     int i;
     glClear(GL_COLOR_BUFFER_BIT);
     glBegin(GL_POLYGON);
     for(i=0; i<n; ++i)<br="">          glVertex2f(R*cos(2*Pi/n*i), R*sin(2*Pi/n*i));
     glEnd();
     glFlush();
}

例二、画一个五角星
/*
设五角星的五个顶点分布位置关系如下:
      A
E        B

D    C
首先,根据余弦定理列方程,计算五角星的中心到顶点的距离a
(假设五角星对应正五边形的边长为.0)
a = 1 / (2-2*cos(72*Pi/180));
然后,根据正弦和余弦的定义,计算B的x坐标bx和y坐标by,以及C的y坐标
(假设五角星的中心在坐标原点)
bx = a * cos(18 * Pi/180);
by = a * sin(18 * Pi/180);
cy = -a * cos(18 * Pi/180);
五个点的坐标就可以通过以上四个量和一些常数简单的表示出来
*/
#include 
const GLfloat Pi = 3.1415926536f;
void myDisplay(void)
{
     GLfloat a = 1 / (2-2*cos(72*Pi/180));
     GLfloat bx = a * cos(18 * Pi/180);
     GLfloat by = a * sin(18 * Pi/180);
     GLfloat cy = -a * cos(18 * Pi/180);
     GLfloat
         PointA[2] = { 0, a },
         PointB[2] = { bx, by },
         PointC[2] = { 0.5, cy },
         PointD[2] = { -0.5, cy },
         PointE[2] = { -bx, by };

glClear(GL_COLOR_BUFFER_BIT);
     // 按照A->C->E->B->D->A的顺序,可以一笔将五角星画出
     glBegin(GL_LINE_LOOP);
         glVertex2fv(PointA);
         glVertex2fv(PointC);
         glVertex2fv(PointE);
         glVertex2fv(PointB);
         glVertex2fv(PointD);
     glEnd();
     glFlush();
}

例三、画出正弦函数的图形
/*
由于OpenGL默认坐标值只能从-1到1,(可以修改,但方法留到以后讲)
所以我们设置一个因子factor,把所有的坐标值等比例缩小,
这样就可以画出更多个正弦周期
试修改factor的值,观察变化情况
*/
#include 
const GLfloat factor = 0.1f;
void myDisplay(void)
{
     GLfloat x;
     glClear(GL_COLOR_BUFFER_BIT);
     glBegin(GL_LINES);
         glVertex2f(-1.0f, 0.0f);
         glVertex2f(1.0f, 0.0f);         // 以上两个点可以画x轴
         glVertex2f(0.0f, -1.0f);
         glVertex2f(0.0f, 1.0f);         // 以上两个点可以画y轴
     glEnd();
     glBegin(GL_LINE_STRIP);
     for(x=-1.0f/factor; x<1.0f/factor; x+=0.01f)
     {
         glVertex2f(x*factor, sin(x)*factor);
     }
     glEnd();
     glFlush();
}

小结
本课讲述了点、直线和多边形的概念,以及如何使用OpenGL来描述点,并使用点来描述几何图形。
大家可以发挥自己的想象,画出各种几何图形,当然,也可以用GL_LINE_STRIP把很多位置相近的点连接起来,构成函数图象。如果有兴趣,也可以去找一些图象比较美观的函数,自己动手,用OpenGL把它画出来。

OpenGL入门学习(二)的更多相关文章

  1. opengl入门学习

    OpenGL入门学习 说起编程作图,大概还有很多人想起TC的#include <graphics.h>吧? 但是各位是否想过,那些画面绚丽的PC游戏是如何编写出来的?就靠TC那可怜的640 ...

  2. OpenGL入门学习(转)

    OpenGL入门学习 http://www.cppblog.com/doing5552/archive/2009/01/08/71532.html 说起编程作图,大概还有很多人想起TC的#includ ...

  3. OpenGL入门学习(转载)

    说起编程作图,大概还有很多人想起TC的#include <graphics.h>吧? 但是各位是否想过,那些画面绚丽的PC游戏是如何编写出来的?就靠TC那可怜的640*480分辨率.16色 ...

  4. SCARA——OpenGL入门学习五六(三维变换、动画)

    OpenGL入门学习(五) 此课为三维变换的内容,比较枯燥.主要是因为很多函数在单独使用时都不好描述其效果, 在前面绘制几何图形的时候,大家是否觉得我们绘图的范围太狭隘了呢?坐标只能从-1到1,还只能 ...

  5. OpenGL入门学习(三)

    http://developer.178.com/201103/94954704639.html 在第二课中,我们学习了如何绘制几何图形,但大家如果多写几个程序,就会发现其实还是有些郁闷之处.例如:点 ...

  6. ReactJS入门学习二

    ReactJS入门学习二 阅读目录 React的背景和基本原理 理解React.render() 什么是JSX? 为什么要使用JSX? JSX的语法 如何在JSX中如何使用事件 如何在JSX中如何使用 ...

  7. SpringMVC入门学习(二)

    SpringMVC入门学习(二) ssm框架 springMVC  在上一篇博客中,我简单介绍了一下SpringMVC的环境配置,和简单的使用,今天我们将进一步的学习下Springmvc的操作. mo ...

  8. SCARA——OpenGL入门学习四(颜色)

    OpenGL入门学习[四] 本次学习的是颜色的选择.终于要走出黑白的世界了~~ OpenGL支持两种颜色模式:一种是RGBA,一种是颜色索引模式. 无论哪种颜色模式,计算机都必须为每一个像素保存一些数 ...

  9. SCARA——OpenGL入门学习三

    OpenGL入门学习[三] 在第二课中,我们学习了如何绘制几何图形,但大家如果多写几个程序,就会发现其实还是有些郁闷之处.例如:点太小,难以看清楚:直线也太细,不舒服:或者想画虚线,但不知道方法只能用 ...

  10. SCARA——OpenGL入门学习一、二

    参考博客:http://www.cppblog.com/doing5552/archive/2009/01/08/71532.html 简介 最近开始一个机械手臂的安装调试,平面关节型机器人又称SCA ...

随机推荐

  1. vue.js 发布后路径引用问题

    在发布到iis目录下时候,如果放在网站的根目录下的时候,是不会有什么问题的 但是一旦放在了非根目录的其他文件夹里面,这时候index.html里引用的js和css文件路径都会找不到 错误如下 打开in ...

  2. Python_day01_作业笔记

    内容大纲: 1. python的出生与应用以及历史, python2x: 源码冗余,源码重复,源码不规范. python3x: 源码清晰优美简单.   2. python的种类. Cpython: 官 ...

  3. Python3爬取起点中文网阅读量信息,解决文字反爬~~~附源代码

    起点中文网,在“数字”上设置了文字反爬,使用了自定义的文字文件ttf通过浏览器的“检查”显示的是“□”,但是可以在网页源代码中找到映射后的数字正则爬的是网页源代码,xpath是默认utf-8解析网页数 ...

  4. (转)curl常用命令

    本文转自 http://www.cnblogs.com/gbyukg/p/3326825.html 下载单个文件,默认将输出打印到标准输出中(STDOUT)中 curl http://www.cent ...

  5. 如何在C#中调试LINQ查询

    原文:How to Debug LINQ queries in C# 作者:Michael Shpilt 译文:如何在C#中调试LINQ查询 译者:Lamond Lu 在C#中我最喜欢的特性就是LIN ...

  6. Android 显示和隐藏软键盘的方法

       前言:因为项目要求做一个类似贴吧一样的东西,可以评论,所以必不可少地需要用到软键盘的隐藏和显示. Step 1 废话不多说,先上封装好的代码. public class CommonUtils ...

  7. OpenCV学习笔记(八) 边缘、线与圆的检测

    边缘检测 对图像进行边缘检测之前,一般都需要先进行降噪(可调用GaussianBlur函数). Sobel算子 与 Scharr算子 都是一个离散微分算子 (discrete differentiat ...

  8. Python及其常用模块库下载及安装

    一.Python下载:https://www.python.org/downloads/ 二.Python模块下载:http://www.lfd.uci.edu/~gohlke/pythonlibs/ ...

  9. TCP/IP网络编程之优于select的epoll(一)

    epoll的理解及应用 select复用方法由来已久,因此,利用该技术后,无论如何优化程序性能也无法同时接入上百个客户端.这种select方式并不适合以web服务端开发为主流的现代开发环境,所以要学习 ...

  10. luogu3224 [HNOI2012]永无乡

    线段树合并好写好调,隔壁老王的treap+启发式合并难写难调 #include <iostream> #include <cstdio> using namespace std ...