题目

很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n。可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺。

你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配?

输入格式

第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度。

第二行为一个长度为m的字符串A。

第三行为一个长度为n的字符串B。

两个串均仅由小写字母和号组成,其中号表示相应位置已经残缺。

输出格式

第一行包含一个整数k,表示B串中可以完全匹配A串的位置个数。

若k>0,则第二行输出k个正整数,从小到大依次输出每个可以匹配的开头位置(下标从1开始)。

输入样例

3 7

a*b

aebr*ob

输出样例

2

1 5

题解

似乎字符串相关数据结构很难解决这个问题,我们考虑量化匹配关系

我们尝试构造两个多项式,

如果我们能让匹配的位置通过某种运算为0,似乎就能匹配了

如何构造?

如果两个位置匹配,要么这两个位置相等,要么为\(*\)

相等为0,容易想到减法

存在\(*\)就为0,容易想到*就表示0,然后乘起来

就成了这个样子:

\[\sum\limits_{i=1}^{len} (A_i - B_i)^2 * A_i * B_i
\]

将其展开成为三个乘积相加的形式

我们将A串翻转,就可以三次fft计算了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<complex>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1200005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const double pi = acos(-1);
struct E{
double r,i;
E(){}
E(double a,double b):r(a),i(b){}
E operator =(const int& b){
r = b; i = 0;
return *this;
}
};
inline E operator +(const E& a,const E& b){
return E(a.r + b.r,a.i + b.i);
}
inline E operator -(const E& a,const E& b){
return E(a.r - b.r,a.i - b.i);
}
inline E operator *(const E& a,const E& b){
return E(a.r * b.r - a.i * b.i,a.r * b.i + b.r * a.i);
}
inline E operator *=(E& a,const E& b){
return (a = a * b);
}
inline E operator /(E& a,const double& b){
return E(a.r / b,a.i / b);
}
inline E operator /=(E& a,const double& b){
return (a = a / b);
}
int n,m,L,R[maxn];
E A[maxn],B[maxn];
void fft(E* a,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
E wn(cos(pi / i),f * sin(pi / i));
for (int j = 0; j < n; j += (i << 1)){
E w(1,0);
for (int k = 0; k < i; k++,w *= wn){
E x = a[j + k],y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
if (f == -1) for (int i = 0; i < n; i++) a[i] /= n;
}
char P[maxn],T[maxn];
int len,lm,ans[maxn],ansi;
double C[maxn];
void solve(){
int tmp;
for (int i = 0; i < n; i++) A[i] = B[i] = 0;
for (int i = 0; i < len; i++){
if (P[i] != '*'){
tmp = (P[i] - 'a' + 1);
A[i] = tmp * tmp * tmp;
}
}
for (int i = 0; i < lm; i++){
if (T[i] != '*'){
tmp = (T[i] - 'a' + 1);
B[i] = tmp;
}
}
fft(A,1); fft(B,1);
for (int i = 0; i < n; i++) A[i] *= B[i];
fft(A,-1);
for (int i = 0; i < n; i++) C[i] = floor(A[i].r + 0.5); for (int i = 0; i < n; i++) A[i] = B[i] = 0;
for (int i = 0; i < len; i++){
if (P[i] != '*'){
tmp = (P[i] - 'a' + 1);
A[i] = tmp * tmp;
}
}
for (int i = 0; i < lm; i++){
if (T[i] != '*'){
tmp = (T[i] - 'a' + 1);
B[i] = tmp * tmp;
}
}
fft(A,1); fft(B,1);
for (int i = 0; i < n; i++) A[i] *= B[i];
fft(A,-1);
for (int i = 0; i < n; i++) C[i] -= 2 * floor(A[i].r + 0.5); for (int i = 0; i < n; i++) A[i] = B[i] = 0;
for (int i = 0; i < len; i++){
if (P[i] != '*'){
tmp = (P[i] - 'a' + 1);
A[i] = tmp;
}
}
for (int i = 0; i < lm; i++){
if (T[i] != '*'){
tmp = (T[i] - 'a' + 1);
B[i] = tmp * tmp * tmp;
}
}
fft(A,1); fft(B,1);
for (int i = 0; i < n; i++) A[i] *= B[i];
fft(A,-1);
for (int i = 0; i < n; i++) C[i] += floor(A[i].r + 0.5);
}
int main(){
len = read(); lm = read();
scanf("%s",P);
scanf("%s",T);
for (int i = 0; i < (len >> 1); i++) swap(P[i],P[len - i - 1]);
m = len + lm - 2;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 0; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
solve();
for (int i = 0; i <= m; i++){
if (fabs(C[i]) < eps && i - len + 2 > 0 && i - len + 2 <= lm - len + 1){
ans[++ansi] = i - len + 2;
}
}
printf("%d\n",ansi);
for (int i = 1; i <= ansi; i++) printf("%d ",ans[i]);
return 0;
}

BZOJ4259 残缺的字符串 【fft】的更多相关文章

  1. BZOJ4259:残缺的字符串(FFT)

    Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同 ...

  2. BZOJ4259: 残缺的字符串(FFT 字符串匹配)

    题意 题目链接 Sol 知道FFT能做字符串匹配的话这就是个裸题了吧.. 考虑把B翻转过来,如果\(\sum_{k = 0}^M (B_{i - k} - A_k)^2 * B_{i-k}*A_k = ...

  3. luoguP4173 残缺的字符串 FFT

    luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]- ...

  4. Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用

    P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...

  5. P4173 残缺的字符串(FFT字符串匹配)

    P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...

  6. 【BZOJ4259】残缺的字符串 FFT

    [BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...

  7. BZOJ 4259: 残缺的字符串 [FFT]

    4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...

  8. CF528D Fuzzy Search 和 BZOJ4259 残缺的字符串

    Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 ...

  9. 洛谷 P4173 残缺的字符串 (FFT)

    题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...

  10. BZOJ4259 残缺的字符串(FFT)

    两个串匹配时相匹配的位置位置差是相同的,那么翻转一个串就变成位置和相同,卷积的形式. 考虑如何使用卷积体现两个位置能否匹配.一个暴力的思路是每次只考虑一种字符,将其在一个串中设为1,并在另一个串中将不 ...

随机推荐

  1. jqury点击返回顶部代码

    效果请看右下角:代码如下: <div class="totop"><img src="https://www.cnblogs.com/images/cn ...

  2. git 指令记录

    由于之前一直用svn 用git也是用图形化的工具 还是要了解一下git指令 因为都是版本控制工具 有很多相似之处 所以理解起来也比较轻松 仓库: github上面的项目 工作目录下面的所有文件都不外乎 ...

  3. bug汇总

    bug 2018年8月23日 bug 1:散点图画不出来. plt.scatter(validation_examples["longitude"], validation_exa ...

  4. mysql 在线添加字段

    使用工具pt-online-schema-change #! /bin/bash stime=`date +%s` echo "增加字段开始测试时间为:`date +%H:%M:%S`&qu ...

  5. Windows7设置局域网文件共享

    首先要实现共享必须设置共享的机器与访问共享的机器在同一个工作组中. 右键桌面上的计算机图标=>属性 如果不一样的话,就需要点击[更改设置] 右键要共享的文件或者文件夹,点击[共享]打开共享标签: ...

  6. Flask-数据与路由

    数据 图书数据库的地址 # 基地址 http://t.yushu.im # 关键字搜索 http://t.yushu.im/v2/book/search?q={}&start={}&c ...

  7. python入门:输出1-10以内除去7的所有数(自写)

    #!/usr/bin/env python # -*- coding:utf-8 -*- #输出1-10以内除去7的所有数(自写) """ 变量kaishi赋值等于1,w ...

  8. robotframework的列表与字典

    这里以Get Element Size为例,Selenium2Library返回的是列表,AppiumLibrary返回的是字典. 列表用 ${width}获取:字典用 &{ui}[width ...

  9. 使用laravel框架的eloquent\DB模型连接多个数据库

    1.配置.env文件 DB_HOST_TRAILER=127.0.0.1DB_PORT_TRAILER=3306DB_DATABASE_TRAILER=htms_trailerDB_USERNAME_ ...

  10. day13-生成器

    def generator(): print(1) yield 'a' rcp = generator() print(rcp.__next__()) 只要含有yield关键字的函数都是生成器函数.y ...