[luoguP2601] [ZJOI2009]对称的正方形(二维Hash + 二分 || Manacher)
很蒙蔽,不知道怎么搞。
网上看题解有说可以哈希+二分搞,也有的人说用Manacher搞,Manacher是什么鬼?以后再学。
对于这个题,可以从矩阵4个角hash一遍,然后枚举矩阵中的点,再二分半径。
但是得考虑边的长度为奇偶所带来的影响。
比如
1 1
1 1
这个边数为偶数的矩阵显然没法搞。
所以得在矩阵中插入0,
变成
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
具体操作就看代码好了。
然后只枚举 行 + 列 为偶数的点就行。
注意 用 unsigned long long 会超时和超空间,数据允许用 unsigned int
——代码
#include <cstdio>
#include <iostream>
#define UI unsigned int const int MAXN = , bs1 = , bs2 = ;
int n, m, ans;
UI sum[][MAXN][MAXN], base1[MAXN], base2[MAXN]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline int min(int x, int y)
{
return x < y ? x : y;
} inline bool pd(int x, int y, int l)
{
UI t, h;
h = sum[][x + l - ][y + l - ]
- sum[][x - l][y + l - ] * base1[l + l - ]
- sum[][x + l - ][y - l] * base2[l + l - ]
+ sum[][x - l][y - l] * base1[l + l - ] * base2[l + l - ];
t = sum[][x + l - ][y - l + ]
- sum[][x - l][y - l + ] * base1[l + l - ]
- sum[][x + l - ][y + l] * base2[l + l - ]
+ sum[][x - l][y + l] * base1[l + l - ] * base2[l + l - ];
if(h ^ t) return ;
t = sum[][x - l + ][y + l - ]
- sum[][x + l][y + l - ] * base1[l + l - ]
- sum[][x - l + ][y - l] * base2[l + l - ]
+ sum[][x + l][y - l] * base1[l + l - ] * base2[l + l - ];
if(h ^ t) return ;
t = sum[][x - l + ][y - l + ]
- sum[][x + l][y - l + ] * base1[l + l - ]
- sum[][x - l + ][y + l] * base2[l + l - ]
+ sum[][x + l][y + l] * base1[l + l - ] * base2[l + l - ];
if(h ^ t) return ;
return ;
} inline int work(int i, int j)
{
int mid, s = , x = , y = min(min(i, n - i + ), min(j, m - j + ));//二分半径
while(x <= y)
{
mid = (x + y) >> ;
if(pd(i, j, mid)) s = mid, x = mid + ;
else y = mid - ;
}
return s;
} int main()
{
int i, j, k, x;
n = read();
m = read();
n = n << | ;
m = m << | ;
for(i = ; i <= n; i += )
for(j = ; j <= m; j += )
{
x = read();
for(k = ; k < ; k++) sum[k][i][j] = x;
}
base1[] = base2[] = ;
for(i = ; i <= n; i++) base1[i] = base1[i - ] * bs1;
for(i = ; i <= m; i++) base2[i] = base2[i - ] * bs2;
for(i = ; i <= n; i++)
for(j = ; j <= m; j++)
sum[][i][j] += sum[][i - ][j] * bs1;
for(i = ; i <= n; i++)
for(j = ; j <= m; j++)
sum[][i][j] += sum[][i][j - ] * bs2;
for(i = ; i <= n; i++)
for(j = m; j; j--)
sum[][i][j] += sum[][i - ][j] * bs1;
for(i = ; i <= n; i++)
for(j = m; j; j--)
sum[][i][j] += sum[][i][j + ] * bs2;
for(i = n; i; i--)
for(j = ; j <= m; j++)
sum[][i][j] += sum[][i + ][j] * bs1;
for(i = n; i; i--)
for(j = ; j <= m; j++)
sum[][i][j] += sum[][i][j - ] * bs2;
for(i = n; i; i--)
for(j = m; j; j--)
sum[][i][j] += sum[][i + ][j] * bs1;
for(i = n; i; i--)
for(j = m; j; j--)
sum[][i][j] += sum[][i][j + ] * bs2;
for(i = ; i <= n; i++)
for(j = ; j <= m; j++)
if((i ^ j ^ ) & )
ans += work(i, j) >> ;
printf("%d\n", ans);
return ;
}
Manacher的话,学完再搞吧。
[luoguP2601] [ZJOI2009]对称的正方形(二维Hash + 二分 || Manacher)的更多相关文章
- BZOJ 1567 Blue Mary的战役地图(二维hash+二分)
题意: 求两个矩形最大公共子正方形.(n<=50) 范围这么小可以枚举子正方形的边长.那么可以对这个矩形进行二维hash,就可以在O(1)的时候求出任意子矩形的hash值.然后判断这些正方形的h ...
- 牛客练习赛1 矩阵 字符串二维hash+二分
题目 https://ac.nowcoder.com/acm/contest/2?&headNav=www#question 解析 我们对矩阵进行二维hash,所以每个子矩阵都有一个额hash ...
- 【BZOJ1414/3705】[ZJOI2009]对称的正方形 二分+hash
[BZOJ1414/3705][ZJOI2009]对称的正方形 Description Orez很喜欢搜集一些神秘的数据,并经常把它们排成一个矩阵进行研究.最近,Orez又得到了一些数据,并已经把它们 ...
- 题解-------[ZJOI2009]对称的正方形
传送门 题目大意 找到所有的上下左右都相同的正方形. 思路:二分+二维Hash 这道题我们首先想到不能暴力判断一个正方形是否合法. 然后我们发现当一个正方形合法时,以这个正方形为中心且比它小的正方形也 ...
- 二维hash
题目描述 给出一个n * m的矩阵.让你从中发现一个最大的正方形.使得这样子的正方形在矩阵中出现了至少两次.输出最大正方形的边长. 输入描述: 第一行两个整数n, m代表矩阵的长和宽: 接下来n行,每 ...
- BZOJ 1567: [JSOI2008]Blue Mary的战役地图 矩阵二维hash
1567: [JSOI2008]Blue Mary的战役地图 Description Blue Mary最近迷上了玩Starcraft(星际争霸) 的RPG游戏.她正在设法寻找更多的战役地图以进一步提 ...
- BZOJ1567 [JSOI2008]Blue Mary的战役地图(二分+二维hash)
题意 问边长为n的两个正方形中最大的相等子正方形.(n<=50) 题解 用到了二维hash,感觉和一维的不太一样. 对于列行有两个不同的进制数然后也是通过类似前缀和的方法差分出一个矩形的hash ...
- bzoj 1414: [ZJOI2009]对称的正方形 manacher算法+單調隊列
1414: [ZJOI2009]对称的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 331 Solved: 149[Submit][Stat ...
- BZOJ2351[BeiJing2011]Matrix——二维hash
题目描述 给定一个M行N列的01矩阵,以及Q个A行B列的01矩阵,你需要求出这Q个矩阵哪些在原矩阵中出现过.所谓01矩阵,就是矩阵中所有元素不是0就是1. 输入 输入文件的第一行为M.N.A.B,参见 ...
随机推荐
- [神经网络]一步一步使用Mobile-Net完成视觉识别(一)
1.环境配置 2.数据集获取 3.训练集获取 4.训练 5.调用测试训练结果 6.代码讲解 本文是第一篇,环境配置篇. 先打开tensorflow object detection api 看看需要什 ...
- 通过存储过程批量生成spool语句
过存储过程批量生成spool语句 CREATE OR REPLACE PROCEDURE pro_yx_full_txt IS export_handle UTL_FILE.file_type; v_ ...
- 用户价值模型 CITE :https://www.jianshu.com/p/34199b13ffbc
RFM用户价值模型的原理和应用 ▌定义 在众多的用户价值分析模型中,RFM模型是被广泛被应用的:RFM模型是衡量客户价值和客户创利能力的重要工具和手段,在RFM模式中,R(Recency)表示客户购 ...
- 使用Electron开发PC客户端
最近公司要求开发一个PC客户端,要求不能使用.NET开发(为了不让用户安装.net framework),所以就选择了Electron(随口听别人说了一句,之前从来没有接触过).目前项目要完毕了,所以 ...
- ssh整合思想 Spring与Hibernate的整合 项目在服务器启动则自动创建数据库表
Spring整合Hibernate Spring的Web项目中,web.xml文件会自动加载,以出现欢迎首页.也可以在这个文件中对Spring的配置文件进行监听,自启动配置文件, 以及之前Struts ...
- Linux常用命令-----------------磁盘挂载命令
磁盘挂载: [root@sdw1 ~]# mkfs.ext4 /dev/vdb[root@sdw1 ~]# blkid /dev/vdb >> /etc/fstabvi /etc/fsta ...
- [bzoj]1930 pacman吃豆豆
Description 两个PACMAN吃豆豆.一开始的时候,PACMAN都在坐标原点的左下方,豆豆都在右上方.PACMAN走到豆豆处就会吃掉它.PACMAN行走的路线很奇怪,只能向右走或者向上走,他 ...
- SwaggerUI日常使用
最近公司项目集成springFox,记录一些swaggerUI日常使用,包括数组,文件,默认值,允许值,参数/结果类注解,响应码..等等. 一.参数注解: 单参数:@ApiImplicitParam ...
- 201621123080《Java程序设计》第9周学习总结
作业09-集合与泛型 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1. List中指定元素的删除(题集题目) 1.1 实 ...
- OOP面向对象形式的初使化配置
init.php里: <?php use ElemeOpenApi\Config\Config; define("BASE_DIR", dirname(__FILE__) . ...