Smallest Bounding Rectangle

Given the Cartesian coordinates of n(>0)2-dimensional points, write a program that computes the area of their smallest bounding rectangle (smallest rectangle containing all the given points).

Input

The input le may contain multiple test cases. Each test case begins with a line containing a positive 
integer n(<1001) indicating the number of points in this test case. Then follows n lines each containing 
two real numbers giving respectively the x - and y 
-coordinates of a point. The input terminates with a 
test case containing a value 0 for n which must not be processed.

Output

For each test case in the input print a line containing the area of the smallest bounding rectangle 
rounded to the 4th digit after the decimal point.

Sample Input


-3.000 5.000 
7.000 9.000 
17.000 5.000 

10.000 10.000 
10.000 20.000 
20.000 20.000 
20.000 10.000 
0

Sample Output

80.0000 
100.0000

给定平面上n个点的坐标,求能够覆盖所有这些点的最小矩形面积。这个问题难就难在,这个矩形可以倾斜放置(边不必平行于坐标轴)。

这里的倾斜放置很不好处理,因为我们不知道这个矩形最终会倾斜多少度。假设我们知道这个矩形的倾角是α,那么答案就很简单了:矩形面积最小时四条边一定都挨着某个点。也就是说,四条边的斜率已经都知道了的话,只需要让这些边从外面不断逼近这个点集直到碰到了某个点。你不必知道这个具体应该怎么实现,只需要理解这可以通过某种方法计算出来,毕竟我们的重点在下面的过程。
我们的算法很显然了:枚举矩形的倾角,对于每一个倾角,我们都能计算出最小的矩形面积,最后取一个最小值。
这个算法是否是正确的呢?我们不能说它是否正确,因为它根本不可能实现。矩形的倾角是一个实数,它有无数种可能,你永远不可能枚举每一种情况。我们说,矩形的倾角是一个“连续的”变量,它是我们无法枚举这个倾角的根本原因。我们需要一种方法,把这个“连续的”变量变成一个一个的值,变成一个“离散的”变量。这个过程也就是所谓的离散化。
我们可以证明,最小面积的矩形不但要求四条边上都有一个点,而且还要求至少一条边上有两个或两个以上的点。试想,如果每条边上都只有一个点,则我们总可以把这个矩形旋转一点使得这个矩形变“松”,从而有余地得到更小的矩形。于是我们发现,矩形的某条边的斜率必然与某两点的连线相同。如果我们计算出了所有过两点的直线的倾角,那么α的取值只有可能是这些倾角或它减去90度后的角(直线按“\”方向倾斜时)这么C(n,2)种。我们说,这个“倾角”已经被我们“离散化”了。虽然这个算法仍然有优化的余地,但此时我们已经达到了本文开头所说的目的。

此坑待填 离散化思想和凸包 UVA - 10173 Smallest Bounding Rectangle的更多相关文章

  1. UVA 12307 Smallest Enclosing Rectangle(旋转卡壳)

    题意:给你一些点,找出两个可以包含所有点的矩形,一个保证矩形面积最小,一个保证矩形周长最小,输出两个最小值 题解:首先根据所有点求一个凸包,再在这个凸包上枚举每条边,作为矩形的一条边(这样可以保证最小 ...

  2. UVA 12307 Smallest Enclosing Rectangle

    https://vjudge.net/problem/UVA-12307 求覆盖所有点的最小矩形面积.周长 相当于求凸包的最小面积外接矩形.最小周长外接矩形 结论: 这个矩形一定有一条边和凸包上一条边 ...

  3. UVA 221 城市化地图(离散化思想)

    题意: 给出若干个栋楼俯视图的坐标和面积,求从俯视图的南面(可以视为正视图)看过去到底能看到多少栋楼. 输入第一个n说明有n栋楼,然后输入5个实数(注意是实数),分别是楼的左下角坐标(x,y), 然后 ...

  4. HDU5124:lines(线段树+离散化)或(离散化思想)

    http://acm.hdu.edu.cn/showproblem.php?pid=5124 Problem Description John has several lines. The lines ...

  5. UVA 10173 (几何凸包)

    判断矩形能包围点集的最小面积:凸包 #include <iostream> #include <cmath> #include <cstdio> #include ...

  6. 简单几何(数学公式+凸包) UVA 11168 Airport

    题目传送门 题意:找一条直线,使得其余的点都在直线的同一侧,而且使得到直线的平均距离最短. 分析:训练指南P274,先求凸包,如果每条边都算一边的话,是O (n ^ 2),然而根据公式知直线一般式为A ...

  7. 2008 APAC local onsites C Millionaire (动态规划,离散化思想)

    Problem You have been invited to the popular TV show "Would you like to be a millionaire?" ...

  8. UVA 10173

    bitch bitch bitch... TLE,WA一大坨,我是在拿生命来JUDGE啊.. 不得不说,UVA上的数据根本不是随机的,而是有预谋的. for(int i=2;i<n;i++){ ...

  9. UVA 12300 Smallest Regular Polygon(正多边形)

    题意:给出两点,求经过这两点的正n边形的最小面积 题解:这两点一定是最长的弦,我们设正多边形中点c,找到c到每个点的距离(都相同) 我们知道那个等腰三角形的底与每个角度就使用余弦定理 #include ...

随机推荐

  1. Apache Kafka框架学习

    背景介绍 消息队列的比较 kafka框架介绍 术语解释 文件存储 可靠性保证 高吞吐量实现 负载均衡 应用场景 背景介绍: kafka是由Apache软件基金会维护的一个开源流处理平台,由scala和 ...

  2. tar.gz

    tar.gz,或者.tgz的文件一般是在UNIX下用tar和gunzip压缩的文件.可能的文件名还有.tar.gz等.gunzip是一种比pkzip压缩比高的压缩程序,一般 UNIX下都有.tar是一 ...

  3. Openjudge 1.13-23:区间内的真素数

    总时间限制:  1000ms 内存限制:  65536kB 描述 找出正整数 M 和 N 之间(N 不小于 M)的所有真素数. 真素数的定义:如果一个正整数 P 为素数,且其反序也为素数,那么 P 就 ...

  4. mvc的model验证,ajaxhelper,验证机制语法

    ajaxhelper: onsuccess是调用成功后显示方法,还有一个方法是调用前显示 model验证: 控件前端验证: 需要引入的JS 其中第二个是ajaxhelper的必须验证 后台的两个同名不 ...

  5. Codeforces Round #290 (Div. 2) _B找矩形环的三种写法

    http://codeforces.com/contest/510/status/B 题目大意 给一个n*m  找有没有相同字母连起来的矩形串 第一种并查集 瞎搞一下 第一次的时候把val开成字符串了 ...

  6. spark 之主成分分析

    C4∗2

  7. android stuido ndk 开发

    开发环境: Android studio 1.0.2 ndk android-ndk-r10d-windows-x86_64 ------------------------------------ ...

  8. shell脚本,当用sed删除某一文件里面的内容时,并追加到同一个文件会出现问题。

    shell脚本,当用sed删除某一文件里面的内容时,并追加到同一个文件会出现问题.因为初始文件和写入文件是一个文件这是失败的.需要追加到另一个文件,然后再用mv进行操作.[root@localhost ...

  9. 628. Maximum Product of Three Numbers@python

    Given an integer array, find three numbers whose product is maximum and output the maximum product. ...

  10. (23)zabbix单位符号Unit symbols

    概述 在zabbix里面,我们不需要使用大数字来,例如我们可以不使用86400来表示一天,这个数字又不容易理解也容易出错.用什么办法来解决大数字问题呢?我们可以使用单位来简化,例如简化zabbix触发 ...