这道题之前一直没敢做,没想到前天用递归一遍过了。

当时为什么想着用递归,而不是dp呢。由于我想到达某个位置的情况有非常多,即使从当前位置開始的搜索是已知的,但之前的状态是如何的也无从得知啊,实话实说,我是不会用dp解这个。。

递归的思路就好说多了,从当前点開始。有上下左右四个位置能够探測,假设探測成功的话,要把当前的位置用其它符号标记出来,以免反复訪问。实际上就是DFS嘛。仅仅只是入口多一些。

须要注意的一点是,每一个点都能够作为起点。所以这个要穷举一下。否则会漏掉情况的。

当然有一种情况走通就能够返回了。剪枝之。

代码又臭又长,只是work:

class Solution {
public:
int row, column;
bool doexist(vector<vector<char> > &board, string &word, int len, int i, int j){
if(len == word.length()) return true;
bool res;
if(i>0&&board[i-1][j] == word[len]){
board[i-1][j] = '.';
res = doexist(board, word, len+1, i-1, j);
if(res) return true;
else board[i-1][j] = word[len];
}
if(i<row-1&&board[i+1][j] == word[len]){
board[i+1][j] = '.';
res = doexist(board, word, len+1, i+1, j);
if(res) return true;
else board[i+1][j] = word[len];
}
if(j>0&&board[i][j-1] == word[len]){
board[i][j-1] = '.';
res = doexist(board, word, len+1, i, j-1);
if(res) return true;
else board[i][j-1] = word[len];
}
if(j<column-1&&board[i][j+1] == word[len]){
board[i][j+1] = '.';
res = doexist(board, word, len+1, i, j+1);
if(res) return true;
else board[i][j+1] = word[len];
}
return false;
}
bool exist(vector<vector<char> > &board, string word) {
row = board.size();
if(row == 0) return false;
column = board[0].size();
char c;
for(int i=0;i<row;i++){
for(int j=0;j<column;j++){
if(board[i][j] == word[0]){
board[i][j] = '.';
if(doexist(board, word, 1, i, j))
return true;
board[i][j] = word[0];
}
}
}
return false;
}
};

leetcode第一刷_Word Search的更多相关文章

  1. leetcode第一刷_Word Ladder II

    这道题非常难. 之前的题目我提到过一次用两个vector来做层序遍历的,就是由于这道题.要想最后恢复出单词变换的路径,就须要事先保存,依据dp中路径恢复的启示,保存的应该是一个单词的前一个变换节点.可 ...

  2. leetcode第一刷_Validate Binary Search Tree

    有了上面的教训,这道题就简单多了,什么时候该更新pre是明白的了,倒是有个细节,二叉搜索树中是不同意有相等节点的,所以题目的要求用黑体字标明了.写的时候注意就能够了. class Solution { ...

  3. leetcode第一刷_Convert Sorted List to Binary Search Tree

    好,二叉搜索树粉末登场,有关他的问题有这么几个,给你一个n,如何求全部的n个节点的二叉搜索树个数?能不能把全部的这些二叉搜索树打印出来? 这道题倒不用考虑这么多,直接转即可了,我用的思想是分治,每次找 ...

  4. leetcode第一刷_Unique Binary Search Trees

    这道题事实上跟二叉搜索树没有什么关系,给定n个节点,让你求有多少棵二叉树也是全然一样的做法.思想是什么呢,给定一个节点数x.求f(x),f(x)跟什么有关系呢,当然是跟他的左右子树都有关系.所以能够利 ...

  5. leetcode第一刷_Convert Sorted Array to Binary Search Tree

    晕.竟然另一样的一道题.换成sorted array的话.找到中间位置更加方便了. TreeNode *sortTree(vector<int> &num, int start, ...

  6. leetcode第一刷_Set Matrix Zeroes

    这个题乍一看非常easy,实际上还挺有技巧的.我最開始的想法是找一个特殊值标记.遇到一个0,把他所相应的行列中非零的元素标记成这个特殊值.0值保持不变,然后再从头遍历一次,碰到特殊值就转化成0. 问题 ...

  7. leetcode第一刷_Permutations II

    当有反复元素的时候呢? 不用拍脑袋都会想到一种方法,也是全部有反复元素时的通用处理方法,维护一个set,假设这个元素没增加过就增加,增加过了的忽略掉.可是,在这道题上这个通用方法竟然超时了! 怎么办? ...

  8. leetcode第一刷_Populating Next Right Pointers in Each Node II

    很自然的推广,假设去掉全然二叉树的条件呢?由于这个条件不是关键,因此不会影响整体的思路.做法依旧是每次找到一层的起点,然后一层一层的走. 假设是全然二叉树的话,每层的起点就是上一层起点的左孩子,兄弟之 ...

  9. leetcode第一刷_Merge Intervals

    看到这个题我就伤心啊,去微软面试的时候,第一个面试官让我做的题目就是实现集合的交操作,这个集合中的元素就像这里的interval一样.是一段一段的.当时写的那叫一个慘不忍睹.最后果然被拒掉了. .好好 ...

随机推荐

  1. myeclipse搭建activemq 简单聊天

    需要一起交流的请加群qq:200634530

  2. nginx访问控制allow、deny(ngx_http_access_module)

    单看nginx模块名ngx_http_access_module,很多人一定很陌生,但是deny和allow相比没一个人不知道的,实际上deny和allow指令属于ngx_http_access_mo ...

  3. 发行说明 - Kafka - 版本1.0.0

    发行说明 - Kafka - 版本1.0.0 以下是Kafka 1.0.0发行版中解决的JIRA问题的摘要.有关该版本的完整文档,入门指南以及有关该项目的信息,请参阅Kafka项目网站. 有关升级的注 ...

  4. 新blog新帖><

    欢迎来到Mychael的无声乐章 今天搬到了博客园,以后就在这个安谧的地方创作啦OvO 把以前的博客搬了过来 以前的分类似乎崩了.... [以前一些LaTex公式可能会崩掉,那就回我原博客看吧Mych ...

  5. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

  6. NodeJS学习(1)--- 安装配置介绍

    Node.js 安装配置 本章节我们将向大家介绍在window和Linux上安装Node.js的方法. 本安装教程以Node.js v6.10.1 LTS(长期支持版本)版本为例. Node.js安装 ...

  7. POJ3311 Hie with the Pie

    The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfortu ...

  8. Codevs 搜索刷题 集合篇

    2919 选择题 时间限制: 1 s 空间限制: 16000 KB 题目等级 : 黄金 Gold 题目描述 Description 某同学考试,在N*M的答题卡上写了A,B,C,D四种答案. 他做完了 ...

  9. time stamp in javascript

    JavaScript 获取当前时间戳: 第一种方法: var timestamp = Date.parse(new Date()); 结果:1280977330000 第二种方法: var times ...

  10. 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---46

    以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下: