51nod_1236_序列求和 V3 _组合数学
51nod_1236_序列求和 V3 _组合数学
Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2)。Fib(0) = 0, Fib(1) = 1。
$S(n,k)=\frac{1}{\sqrt 5^k}\sum\limits_{i=1}^{n}((\frac{1+\sqrt 5}{2})^i-(\frac{1-\sqrt 5}{2})^i)^k$
$=\frac{1}{\sqrt 5^k}\sum\limits_{i=1}^{n}\sum\limits_{j=0}^{k}C(k,j)*(-1)^{k-j}*(\frac{1+\sqrt 5}{2})^{ij}*(\frac{1-\sqrt 5}{2})^{i(k-j)}$
$=\frac{1}{\sqrt 5^k}\sum\limits_{j=0}^{k}C(k,j)*(-1)^{k-j}\sum\limits_{i=1}^{n}(\frac{1+\sqrt 5}{2})^{ij}*(\frac{1-\sqrt 5}{2})^{i(k-j)}$
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
typedef long long ll;
#define mod 1000000009
#define N 100050
#define G5 383008016
ll fac[N],inv[N];
ll P,Q;
ll qp(ll x,ll y) {
x=(x%mod+mod)%mod;
ll re=1; for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;
}
void init() {
int i;
for(fac[0]=1,i=1;i<=100000;i++) fac[i]=fac[i-1]*i%mod;
inv[100000]=qp(fac[100000],mod-2);
for(i=99999;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
ll C(ll n,ll m) {
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
ll Sum(ll x,ll n) {
if(x==1) return n%mod;
if(x==0) return 0;
return (qp(x,n+1)-x)%mod*qp(x-1,mod-2)%mod;
}
ll solve(ll n,int K) {
int j; ll ans=0;
for(j=0;j<=K;j++) {
int opt=((K-j)&1)?-1:1;
ll t1=C(K,j),t2=opt,t3=Sum(qp(P,j)*qp(Q,K-j)%mod,n);
ans=((ans+t1*t2%mod*t3%mod)%mod+mod)%mod;
}
return ans;
}
int main() {
init();
ll i2=qp(2,mod-2);
P=(1+G5)*i2%mod; Q=((1-G5)*i2%mod+mod)%mod;
int T;
ll n; int K;
scanf("%d",&T);
ll ig5=qp(G5,mod-2);
while(T--) {
scanf("%lld%d",&n,&K);
printf("%lld\n",qp(ig5,K)*solve(n,K)%mod);
}
}
51nod_1236_序列求和 V3 _组合数学的更多相关文章
- 51nod1236 序列求和 V3
这题炒鸡简单,只要第一步想对了后面顺风顺水QWQ(然鹅我没想到) 前置芝士: 斐波那契数列通项公式 等比数列求和公式 二项式定理 这题要求的就是 \(\sum_{i=1}^n Fib(i)^k\) , ...
- 51nod1236 序列求和 V3 【数学】
题目链接 51nod1236 题解 用特征方程求得斐波那契通项: \[f(n) = \frac{(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{ ...
- [51nod1236] 序列求和 V3(斐波那契数列)
题面 传送门 题解 把求和的柿子用斐波那契数列的通项公式展开 \[ \begin{aligned} Ans &=\sum\limits_{i = 1}^{n} \left(\frac{(\fr ...
- BZOJ_4517_[Sdoi2016]排列计数_组合数学
BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- HDU 5358 First One 求和(序列求和,优化)
题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要 ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学
BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学 Description 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛, ...
- BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...
随机推荐
- mybatis数据查询返回值
查询: 返回值是整数. 小于0是查询的数据不存在,大于0是查询的数据已经存在. 修改: 返回值是整数. 大于0是修改的数据成功,否则就是失败. 添加: 和修改同理.
- php 导出CSV抽象类
php 导出CSV抽象类,依据总记录数与每批次记录数,计算总批次.循环导出.避免内存不足的问题. ExportCSV.class.php <? php /** php Export CSV ab ...
- 10-客户端防表单重复提交和服务器端session防表单重复提交
/****************************************************DoFormServlet********************************** ...
- 【WPF学习笔记】之如何保存画面上新建的数据到数据库中并且删除画面上的数据和数据库的数据:动画系列之(五)
...... 承接系列四后续: 首先,我要在用户控件2中添加“保存”,“删除”按钮. XAML代码: <UserControl x:Class="User.uc_item" ...
- 21-nginx单机1W并发优化
一:优化思路 (1)建立socket连接 (2)打开文件,并沿socket返回.二:优化 (1) 修改nginx.conf 进程数量 默认是1024 改成20140 worker_rlimit_no ...
- JavaWeb学习总结第四篇--Servlet开发
Servlet开发 用户在浏览器中输入一个网址并回车,浏览器会向服务器发送一个HTTP请求.服务器端程序接受这个请求,并对请求进行处理,然后发送一个回应.浏览器收到回应,再把回应的内容显示出来.这种请 ...
- 消息队列Handler的用法
下面是每隔一段时间就执行某个操作,直到关闭定时操作: final Handler handler = new Handler(); Runnable runnable = new Runnable() ...
- 解决:IOS viewDidAppear/viewWillAppear无法被调用
本文转载至 http://my.oschina.net/lvlove/blog/82264 原因: 苹果的文档是这样描述的: If the view belonging to a view con ...
- ES mapping映射及优化
mapping映射 主要类型: 同一index下,不同type中如果有相同filed:es进行mapping映射的时候,按照先写进去的指定类型:比如同一index,包含的type中都有key1字段,如 ...
- sql server charindex函数和patindex函数详解(转)
charindex和patindex函数常常用来在一段字符中搜索字符或字符串.假如被搜索的字符中包含有要搜索的字符,那么这两个函数返回一个非零的整数,这个整数是要搜索的字符在被搜索的字符中的开始位数. ...