4777: [Usaco2017 Open]Switch Grass

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 46  Solved: 10
[Submit][Status][Discuss]

题目:给定一张带权无向图,每个点有一个颜色,每次改变一个点的颜色,要求你在操作后输出这个图中最近异色点对之间的距离最近异色点对定义为:一对点颜色不同,且距离最小。

数据范围:N个点,M条无向边,Q次修改,颜色范围[1,k],边权L。N,M,Q≤200000,K≤N,1≤L≤10.

想法:

发现1:答案肯定是某一边权。因为边权大于0,答案路径上肯定是先经过若干个相同颜色的点,最后再碰到不相同。所以只要取这条路径的末端两个点就好了....

发现2:对于原图的答案等价于其最小生成树图的答案。因为在一个环上,最大边权只可能变劣(画图看看嘛),满足最小生成树环切性。

所以问题变成了:给你一棵最小生成树,询问该时刻相邻异色点距离最小是多少。

在线搞:既然是棵树,每个节点用堆/set存下每个颜色中其儿子节点的距离。剩下好像就很明了....

离线搞:考虑一条边什么时候会作为答案。按边权从小到大考虑每条边,用并查集跳过已经有边的时间。用双向链表维护一个点的颜色时间段。

复杂度:O(n+q+mlogm) 如果用基数排序也许是线性算法?

#include<cstdio>
#include<vector>
#include<algorithm> const int len();
struct Data{int last,col,pre,suc;}look_v,look_u,look;
std::vector<Data>Seg[len+];
struct ABC{int a,b,c;bool bf;}L[len+];
struct Node{int nd,nx;}bot[len*+];
int tot,first[len+],depth[len+];
int f[len+],ans[len+];
int n,m,k,q,x,y,col[len+],last[len+];
template <class T>void read(T &x)
{
x=;bool f=;char c=getchar();
while((c<''||c>'')&&c!='-')c=getchar(); if(c=='-')f=,c=getchar();
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
x=f?-x:x;
}
template <class T>T abs(T x){return x<?-x:x;}
template <class T>T min(T a,T b){return a>b?b:a;}
void swap(int &x,int &y){x^=y,y^=x,x^=y;}
bool cmp(ABC A,ABC B){return A.c<B.c;}
void add(int a,int b){bot[++tot]=(Node){b,first[a]};first[a]=tot;}
int gf(int x)
{
int v=x;while(f[v]!=v)v=f[v];
for(int o;x!=v;x=o)o=f[x],f[x]=v;
return v;
}
void Kruskal()
{
for(int i=,fa,fb;i<=m;i++)
{
fa=gf(L[i].a); fb=gf(L[i].b);
if(fa!=fb)
{
f[fa]=fb;
L[i].bf=true;
}
}
}
void union_Seg(int x,int v)
{
int pre=Seg[x][v].pre,suc=Seg[x][v].suc,t=gf(Seg[x][v].last);
look=Seg[x][v];
if(Seg[x][suc].last<=t)//中间这块不会再被访问到
{
Seg[x][pre].suc=suc;
Seg[x][suc].pre=pre;
if(Seg[x][pre].col==Seg[x][suc].col)
{
Seg[x][pre].suc=Seg[x][suc].suc;//合并颜色相同的
Seg[x][Seg[x][pre].suc].pre=pre;
}
}
}
int main()
{
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
read(n),read(m),read(k),read(q);
for(int i=;i<=m;i++) read(L[i].a),read(L[i].b),read(L[i].c);
for(int i=;i<=n;i++) read(col[i]),f[i]=i,last[i]=;//从零开始
std::sort(L+,L++m,cmp);
Kruskal();
for(int i=,sz;i<=q;i++)
{
read(x),read(y);
sz=Seg[x].size();
Seg[x].push_back((Data){last[x],col[x],sz-,sz+});
col[x]=y; last[x]=i; f[i]=i;
}
for(int i=,sz;i<=n;i++)
{
sz=Seg[i].size();
Seg[i].push_back((Data){last[i],col[i],sz-,sz+});
Seg[i].push_back((Data){q+,,,});//边界
}
f[q+]=q+;
for(int i=;i<=m;i++)
if(L[i].bf)
{
x=L[i].a,y=L[i].b;
for(int now=,v=,u=;now<=q;)
{
now=gf(now+); if(now>q)break;
look=Seg[x][v];
for(int suc=Seg[x][v].suc;Seg[x][suc].last<=now;)
look=Seg[x][suc],v=suc,suc=Seg[x][suc].suc;//可以被卡到O(q^2)
look=Seg[y][u];
for(int suc=Seg[y][u].suc;Seg[y][suc].last<=now;)
look=Seg[y][suc],u=suc,suc=Seg[y][suc].suc;//可以被卡到O(q^2)
look_v=Seg[x][v]; look_u=Seg[y][u];
if(Seg[x][v].col!=Seg[y][u].col)ans[now]=L[i].c,f[now]=now+;//共O(n)
else now=min(Seg[x][ Seg[x][v].suc ].last,Seg[y][ Seg[y][u].suc ].last)-;//可以被卡到O(q^2)
union_Seg(x,v); union_Seg(y,u);//合并 简化 以保证不被卡成O(q^2)
//合并后 v,u不变没影响
}
}
for(int i=;i<=q;i++)printf("%d %d\n",i,ans[i]);
return ;
}
 

BZOJ 4777: [Usaco2017 Open]Switch Grass的更多相关文章

  1. BZOJ 4777 Usaco2017 Open Switch Grass Kruskal+替罪羊树+权值线段树

    这道题首先可以看出答案一定是一条边,而且答案一定在最小生成树上,那么我们就可以在这个最小生成树上维护他与异色儿子的边最小值,所以我们就可以已通过Kruskal和一棵平衡树来解决,时间复杂度是O(n*l ...

  2. BZOJ4777 [Usaco2017 Open]Switch Grass[最小生成树+权值线段树套平衡树]

    标题解法是吓人的. 图上修改询问,不好用数据结构操作.尝试转化为树来维护.发现(不要问怎么发现的)最小生成树在这里比较行得通,因为最近异色点对一定是相邻的(很好想),所以只要看最短的一条两端连着异色点 ...

  3. Luogu 3665 [USACO17OPEN]Switch Grass 切换牧草

    BZOJ 4777 被权限了. 这道题的做法看上去不难,但是感觉自己yy不出来. 首先是两个结论: 1.答案一定是连接着两个异色点的一条边. 2.答案一定在最小生成树上. 感觉看到了之后都比较显然,自 ...

  4. bzoj 4780: [Usaco2017 Open]Modern Art 2

    4780: [Usaco2017 Open]Modern Art 2 Time Limit: 10 Sec  Memory Limit: 128 MB Description Having becom ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  7. BZOJ 4756 [Usaco2017 Jan]Promotion Counting(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题目大意] 给出一棵树,对于每个节点,求其子树中比父节点大的点个数 [题解] ...

  8. bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...

  9. bzoj 4991 [Usaco2017 Feb]Why Did the Cow Cross the Road III(cdq分治,树状数组)

    题目描述 Farmer John is continuing to ponder the issue of cows crossing the road through his farm, intro ...

随机推荐

  1. JavaEE 企业级分布式高级架构师课程

    总目录: 第一课(2018.7.10) 01 mybatis框架整体概况(2018.7.10)-

  2. 2. DVWA亲测文件包含漏洞

    Low级:     我们分别点击这几个file.php文件 仅仅是配置参数的变化: http://127.0.0.1/DVWA/vulnerabilities/fi/?page=file3.php 如 ...

  3. yzm10的ACM集训小感

    7月30号,ACM集训进行了两周,一切都已on the right way.这时的我适时地从题海中探出头,其实除了刷题,也该写点什么来总结下过去.首先,在第一周里,我学习了数据结构,知道了STL这么一 ...

  4. 推荐一款让你纵横Github的读码神器

    当我们想深入了解一个开源项目的时候,通常我们有以下几种姿势: 懒汉型 通过Web的方式,逐个的点击页面寻找和查看具体的源码内容. 优点:不依赖任何工具,无须任何额外的操作 缺点:效率低下,查找文件不便 ...

  5. time元素 pubdate属性

    time元素和pubdate属性 https://blog.csdn.net/ziy10231207/article/details/51883397

  6. FZU 2219【贪心】

    思路: 因为工人造完一个房子就死了,所以如果m<n则还需要n-m个工人. 最优的方案应该是耗时长的房子应该尽快建,而且最优的是越多的房子在建越好,也就是如果当前人数不到n,只派一个人去分裂. 解 ...

  7. u17 u18共存

    公司用的Unity版本是2017版本的,由于需要尝试一些实验性的新功能,我就安装了Unity2018版本,结果发现Unity2018版本破解之后,Unity2017版本不能用了.那么怎么解决两个版本的 ...

  8. ios 实现 cell 的动态高度

    - (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)indexPath { Mes ...

  9. Python小世界:匿名函数、高阶函数、推导式

    前言 木子本人搞起Python已有多年,一直觉得什么都会,但是有时候实操起来,才觉得很多底层基础的知识都没有彻底的灵活掌握. 另外,网上关于Python基础知识的各种普及已有太多太多. 附上相关大神的 ...

  10. echart option属性

    option 图表选项,包含图表实例任何可配置选项: 公共选项 , 组件选项 , 数据选项 名称 描述 {color}backgroundColor 全图默认背景,(详见backgroundColor ...