TOJ1698: Balanced Lineup
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
Source
输出区间最大最小值之差,RMQ
#include<bits/stdc++.h>
using namespace std;
const int N=;
int dmi[N][],dma[N][],f[N];
int n,q,l,r;
void RMQ_init()
{
for(int j=; (<<j)<=n; j++)
for(int i=; i+j-<=n; i++)
dmi[i][j]=min(dmi[i][j-],dmi[i+(<<(j-))][j-]),dma[i][j]=max(dma[i][j-],dma[i+(<<(j-))][j-]);
}
int RMQ(int l,int r)
{
int k=f[r-l+];
return max(dma[l][k],dma[r-(<<k)+][k])-min(dmi[l][k],dmi[r-(<<k)+][k]);
}
int main()
{
f[]=-;
scanf("%d%d",&n,&q);
for(int i=; i<=n; i++)
scanf("%d",&dma[i][]),dmi[i][]=dma[i][],f[i]=((i&(i-))==)?f[i-]+:f[i-];
RMQ_init();
while(q--)
{
scanf("%d%d",&l,&r);
printf("%d\n",RMQ(l,r));
}
return ;
}
线段树
#include<bits/stdc++.h>
using namespace std;
#define lson l,mi,rt<<1
#define rson mi+1,r,rt<<1|1
struct T
{
int ma,mi,l,r;
}tree[];
int h[];
int ma,mi;
void build(int l,int r,int rt)
{
tree[rt].l=l,tree[rt].r=r;
if(l==r)
{
tree[rt].ma=tree[rt].mi=h[l];
return;
}
int mi=(l+r)>>;
build(lson);
build(rson);
tree[rt].ma=max(tree[rt<<].ma,tree[rt<<|].ma);
tree[rt].mi=min(tree[rt<<].mi,tree[rt<<|].mi);
}
void findma(int l,int r,int rt)
{
if(tree[rt].l==l&&tree[rt].r==r)
{
if(tree[rt].ma>ma)ma=tree[rt].ma;
return;
}
int mi=(tree[rt].l+tree[rt].r)>>;
if(mi>=r)
findma(l,r,rt<<);
else if(mi<l)
findma(l,r,rt<<|);
else
findma(lson),findma(rson);
} void findmi(int l,int r,int rt)
{
if(tree[rt].l==l&&tree[rt].r==r)
{
if(tree[rt].mi<mi)mi=tree[rt].mi;
return;
}
int mi=(tree[rt].l+tree[rt].r)>>;
if(mi>=r)
findmi(l,r,rt<<);
else if(mi<l)
findmi(l,r,rt<<|);
else
findmi(lson),findmi(rson);
}
int main()
{
int n,q,i,a,b;
scanf("%d%d",&n,&q);
for(i=;i<=n;i++)
scanf("%d",&h[i]);
build(,n,);
while(q--)
{
ma=;
mi=1e9;
scanf("%d%d",&a,&b);
findma(a,b,),findmi(a,b,);
printf("%d\n",ma-mi);
}
return ;
}
TOJ1698: Balanced Lineup的更多相关文章
- poj 3264:Balanced Lineup(线段树,经典题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 32820 Accepted: 15447 ...
- Balanced Lineup(树状数组 POJ3264)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 40493 Accepted: 19035 Cas ...
- 三部曲一(数据结构)-1022-Gold Balanced Lineup
Gold Balanced Lineup Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Othe ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- poj3264 - Balanced Lineup(RMQ_ST)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 45243 Accepted: 21240 ...
- bzoj 1637: [Usaco2007 Mar]Balanced Lineup
1637: [Usaco2007 Mar]Balanced Lineup Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer John ...
- BZOJ-1699 Balanced Lineup 线段树区间最大差值
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...
- POJ3264 Balanced Lineup
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 44720 Accepted: 20995 ...
- POJ 3274 Gold Balanced Lineup
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...
随机推荐
- css隐藏元素的几种方法与区别
css隐藏元素的几种方法与区别 一:display:none;隐藏不占位 display 除了不能加入 CSS3 动画豪华大餐之外,基本效果卓越,没什么让人诟病的地方. 二:position:abso ...
- 判断JS数据类型的几种方法
原文转自http://www.cnblogs.com/onepixel/p/5126046.html! 说到数据类型,我们先说一下JavaScript 中常见的几种数据类型: 基本类型:string, ...
- 【虚拟机-网络IP】保留正在使用的 VIP
本文包含以下内容 适用场景 操作步骤 保留IP的费用 适用场景 我们希望云服务有一个固定的 IP,即使虚拟机以 deallocated 的方式关闭. 用户忘记先保留 VIP 而直接完成了部署. 希望不 ...
- 一键部署LNMP堆栈Web应用基础架构
https://market.azure.cn/Vhd/Show?vhdId=9852&version=10884 产品详情 产品介绍LEMP/LNMP 是指一组通常一起使用来运行动态网站或者 ...
- POJ 1067 取石子游戏 (威佐夫博奕,公式)
题意: 有两堆石子,两个人轮流取石子.规定每次有两种取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.给定两堆石子数量,问先手的输赢? ...
- 程序员的智囊库系列之3--分布式文件系统(Distributed file systems)
程序员的智囊库系列之3--分布式文件系统(Distributed file systems) 这是程序员的智囊库系列的第三篇文章.上一篇文章本来打算介绍几个搭建网站的框架,但由于这部分的内容较多,还需 ...
- HDU 4741 Save Labman No.004 (几何)
题意:求空间两线的最短距离和最短线的交点 题解: 线性代数和空间几何,主要是用叉积,点积,几何. 知道两个方向向量s1,s2,求叉积可以得出他们的公共垂直向量,然后公共垂直向量gamma和两线上的点形 ...
- [转]C++中sizeof(struct)怎么计算?
版权属于原作者,我只是排版. 1. sizeof应用在结构上的情况 请看下面的结构: struct MyStruct{ double dda1; char dda; int type;}; 对结构My ...
- 2018.3.4 Linux and Unix 知识点
UNIX系统的特点 1.多任务 2.多用户 3.强大的网络功能 4.设备无关性 5.并行处理能力 6.开放性 7.错误处理 Linux系统的特点 1.自由软件 2.良好的兼容性 3.良好的界面 4.丰 ...
- pbr 5.2.1需使用中科大的源,豆瓣的不行
-bash-4.2$ .tox/tempest/bin/pip install pbr==5.2.1DEPRECATION: Python 2.7 will reach the end of its ...