实践认识--ANN
1. 常用激活函数
激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。
(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数 ( Sigmoid Function )

该函数的导函数:

(5) 双极S形函数

该函数的导函数:

S形函数与双极S形函数的图像如下:

图3. S形函数与双极S形函数图像
双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。
由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)
2.数据预处理
在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。
(1) 什么是归一化?
数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。
(2) 为什么要归一化处理?
<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。
<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。
<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。
<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。
(3) 归一化算法
一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:
<1>y = ( x - min )/( max - min )
其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。
<2>y = 2 * ( x - min ) / ( max - min ) - 1
这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。
(4) Matlab数据归一化处理函数
Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。
<1> premnmx
语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)
参数:
pn: p矩阵按行归一化后的矩阵
minp,maxp:p矩阵每一行的最小值,最大值
tn:t矩阵按行归一化后的矩阵
mint,maxt:t矩阵每一行的最小值,最大值
作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。
<2> tramnmx
语法:[pn] = tramnmx(p,minp,maxp)
参数:
minp,maxp:premnmx函数计算的矩阵的最小,最大值
pn:归一化后的矩阵
作用:主要用于归一化处理待分类的输入数据。
<3> postmnmx
语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)
参数:
minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值
mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值
作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。
3.使用Matlab实现神经网络
使用Matlab建立前馈神经网络主要会使用到下面3个函数:
newff :前馈网络创建函数
train:训练一个神经网络
sim :使用网络进行仿真
下面简要介绍这3个函数的用法。
(1) newff函数
<1>newff函数语法
newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。
语法:net = newff ( A, B, {C} ,‘trainFun’)
参数:
A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;
B:一个k维行向量,其元素为网络中各层节点数;
C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;
trainFun :为学习规则采用的训练算法。
<2>常用的激活函数
常用的激活函数有:
a) 线性函数 (Linear transfer function)
f(x) = x
该函数的字符串为’purelin’。
b) 对数S形转移函数( Logarithmic sigmoid transfer function )

该函数的字符串为’logsig’。
c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

也就是上面所提到的双极S形函数。该函数的字符串为’ tansig’。
Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。
<3>常见的训练函数
常见的训练函数有:
traingd :梯度下降BP训练函数(Gradient descent backpropagation)
traingdx :梯度下降自适应学习率训练函数
<4>网络配置参数
一些重要的网络配置参数如下:
net.trainparam.goal :神经网络训练的目标误差
net.trainparam.show : 显示中间结果的周期
net.trainparam.epochs :最大迭代次数
net.trainParam.lr : 学习率
(2) train函数
网络训练学习函数。
语法:[ net, tr, Y1, E ] = train( net, X, Y )
参数:
X:网络实际输入
Y:网络应有输出
tr:训练跟踪信息
Y1:网络实际输出
E:误差矩阵
(3) sim函数
语法:Y=sim(net,X)
参数:
net:网络
X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数
Y:输出矩阵Q×N,其中Q为网络输出个数
(4) Matlab BP网络实例
我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。
使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。
Matlab程序如下:
%读取训练数据
[f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150); %注意数据格式,数据之间有逗号和空格之分;然后类别为1,2,3 %特征值归一化
[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]') ; %构造输出矩阵
s = length( class) ;
output = zeros( s , 3 ) ;
for i = 1 : s
output( i , class( i ) ) = 1 ;
end %创建神经网络
net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ; %设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 500 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ; %开始训练
net = train( net, input , output' ) ; %读取测试数据
[t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150); %测试数据归一化
testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ; %仿真
Y = sim( net , testInput ) %统计识别正确率
[s1 , s2] = size( Y ) ;
hitNum = 0 ;
for i = 1 : s2
[m , Index] = max( Y( : , i ) ) ;
if( Index == c(i) )
hitNum = hitNum + 1 ;
end
end
sprintf('识别率是 %3.3f%%',100 * hitNum / s2 )
实验结果:

其他的神经网络:
%产生指定类别的样本点,并在图中绘出
X = [0 1; 0 1]; % 限制类中心的范围
clusters = 5; % 指定类别数目
points = 10; % 指定每一类的点的数目
std_dev = 0.05; % 每一类的标准差
P = nngenc(X,clusters,points,std_dev);
plot(P(1,:),P(2,:),'+r');
title('输入样本向量');
xlabel('p(1)');
ylabel('p(2)'); %建立网络
net=newc([0 1;0 1],5,0.1); %设置神经元数目为5
%得到网络权值,并在图上绘出
figure;
plot(P(1,:),P(2,:),'+r');
w=net.iw{1}
hold on;
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及初始权值');
xlabel('p(1)');
ylabel('p(2)');
figure;
plot(P(1,:),P(2,:),'+r');
hold on; %训练网络
net.trainParam.epochs=7;
net=init(net);
net=train(net,P);
%得到训练后的网络权值,并在图上绘出
w=net.iw{1}
plot(w(:,1),w(:,2),'ob');
hold off;
title('输入样本向量及更新后的权值');
xlabel('p(1)');
ylabel('p(2)');
a=0;
p = [0.6 ;0.8];
a=sim(net,p) %**************指定输入二维向量及其类别*******************
P = [-3 -2 -2 0 0 0 0 +2 +2 +3;
0 +1 -1 +2 +1 -1 -2 +1 -1 0];
C = [1 1 1 2 2 2 2 1 1 1];
%将这些类别转换成学习向量量化网络使用的目标向量
T = ind2vec(C)
%用不同的颜色,绘出这些输入向量
plotvec(P,C),
title('输入二维向量');
xlabel('P(1)');
ylabel('P(2)'); %建立网络
net = newlvq(minmax(P),4,[.6 .4],0.1);
%在同一幅图上绘出输入向量及初始权重向量
figure;
plotvec(P,C)
hold on
W1=net.iw{1};
plot(W1(1,1),W1(1,2),'ow')
title('输入以及权重向量');
xlabel('P(1), W(1)');
ylabel('P(2), W(2)');
hold off; %训练网络,并再次绘出权重向量
figure;
plotvec(P,C);
hold on;
net.trainParam.epochs=150;
net.trainParam.show=Inf;
net=train(net,P,T);
plotvec(net.iw{1}',vec2ind(net.lw{2}),'o');
%对于一个特定的点,得到网络的输出
p = [0.8; 0.3];
a = vec2ind(sim(net,p)) %%%%%%%%%**********随机生成1000个二维向量,作为样本,并绘出其分布*************
P = rands(2,1000);
plot(P(1,:),P(2,:),'+r')
title('初始随机样本点分布');
xlabel('P(1)');
ylabel('P(2)'); %建立网络,得到初始权值
net=newsom([0 1; 0 1],[5 6]);
w1_init=net.iw{1,1}
%绘出初始权值分布图
figure;
plotsom(w1_init,net.layers{1}.distances)
%分别对不同的步长,训练网络,绘出相应的权值分布图
for i=10:30:100
net.trainParam.epochs=i;
net=train(net,P);
figure;
plotsom(net.iw{1,1},net.layers{1}.distances)
end
%对于训练好的网络,选择特定的输入向量,得到网络的输出结果
p=[0.5;0.3];
a=0;
a = sim(net,p)
实践认识--ANN的更多相关文章
- 从下往上看--新皮层资料的读后感 第三部分 70年前的逆向推演- 从NN到ANN
第三部分 NN-ANN 70年前的逆向推演 从这部分开始,调整一下视角主要学习神经网络算法,将其与生物神经网络进行横向的比较,以窥探一二. 现在基于NN的AI应用几乎是满地都是,效果也不错,这种貌似神 ...
- 【机器学习】人工神经网络ANN
神经网络是从生物领域自然的鬼斧神工中学习智慧的一种应用.人工神经网络(ANN)的发展经历的了几次高潮低谷,如今,随着数据爆发.硬件计算能力暴增.深度学习算法的优化,我们迎来了又一次的ANN雄起时代,以 ...
- SVM-支持向量机原理详解与实践
前言 去年由于工作项目的需要实际运用到了SVM和ANN算法,也就是支持向量机和人工神经网络算法,主要是实现项目中的实时采集图片(工业高速摄像头采集)的图像识别的这一部分功能,虽然几经波折,但是还好最终 ...
- 人工神经网络--ANN
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...
- Spring Validation最佳实践及其实现原理,参数校验没那么简单!
之前也写过一篇关于Spring Validation使用的文章,不过自我感觉还是浮于表面,本次打算彻底搞懂Spring Validation.本文会详细介绍Spring Validation各种场景下 ...
- Python应用与实践-转自(吴秦(Tyler))
1. Python是什么? 1.1. Python语言 1.2. Python哲学 2. Python在工作中的应用 2.1. 实例1:文件批量处理 ...
- Python设计模式: 最佳的"策略"模式实践代码
Python设计模式: 最佳的"策略"模式实践代码 今天抽空看了下流畅的python,发现里面介绍了不少python自带的库的使用实例,用起来非常的优雅. 平时用Python来写爬 ...
- webp图片实践之路
最近,我们在项目中实践了webp图片,并且抽离出了工具模块,整合到了项目的基础模板中.传闻IOS10也将要支持webp,那么使用webp带来的性能提升将更加明显.估计在不久的将来,webp会成为标配. ...
- Hangfire项目实践分享
Hangfire项目实践分享 目录 Hangfire项目实践分享 目录 什么是Hangfire Hangfire基础 基于队列的任务处理(Fire-and-forget jobs) 延迟任务执行(De ...
随机推荐
- luogu2158 [SDOI2008]仪仗队 欧拉函数
点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...
- LaTeX新人教程,30分钟从完全陌生到基本入门[转载]
LaTeX新人教程,30分钟从完全陌生到基本入门[转载] 2017-02-05 分类:TeX讲义 阅读(32514) 评论(0) 这是一篇老文了,前几天看微博的时候看到的,文中的很多表达比较过激,思 ...
- 【LeetCode】Binary Tree Preorder Traversal(二叉树的前序遍历)
这道题是LeetCode里的第144道题. 题目要求: 给定一个二叉树,返回它的 前序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,2,3] 进阶: 递归算法很 ...
- 【转载】用OCTAVE实现一元线性回归的梯度下降算法
原文地址:http://www.cnblogs.com/KID-XiaoYuan/p/7247481.html STEP1 PLOTTING THE DATA 在处理数据之前,我们通常要了解数据,对于 ...
- docker容器为什么可以跨平台部署
docker镜像和操作系统没关系,docker最大的价值就是提出了镜像打包技术.首先你的明白什么是docker,什么是镜像,什么是容器,然后你就能明白镜像和操作系统之间的关系.docker是一个引擎, ...
- 《分布式对象存储》作者手把手教你写 GO 语言单元测试!
第一部分:如何写Go语言单元测试 Go语言内建了单元测试(Unit Test)框架.这是为了从语言层面规范写UT的方式. Go语言的命名规则会将以_test.go结尾的go文件视作单元测试代码. 当我 ...
- 【bzoj3566】[SHOI2014]概率充电器 树形概率dp
题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的 ...
- manacher-模板-hd-3068
/* 题意:给一个字符串,求该串的最长回文串的长度: 算法:Manacher O(n)复杂度,求以每一个字符为中心的最长汇文串的长度: 这个算法把奇数和偶数的情况和在一起来考虑了: */ #inclu ...
- oracle 导出表结构信息
直接贴sql: select cols.table_name 表名, cols.column_name 列名, cols.data_type 字段类型, cols.data_length 长度, co ...
- python基于SQLAlchemy的DBtools
新版,只创建一次线程池 # -*- coding: utf-8 -*- from sqlalchemy import create_engine from sqlalchemy.orm import ...