poj1265 Area
题目描述:
由于题目乱码概括一下题意:
给出一个路径,求围成多边形中内部点数、边上点数(包括顶点)以及面积。
题解:
边上点数=$\sum gcd(dx,dy)$
$Pick$定理:设$a$表示内部点数,$b$表示边上点数(包括顶点),$S$表示面积。则$$S=a+ \frac{ b }{ 2 } -1$$
代码:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = ;
struct Point
{
ll x,y;
Point(){}
Point(ll x,ll y):x(x),y(y){}
Point operator + (const Point&a)const{return Point(x+a.x,y+a.y);}
Point operator - (const Point&a)const{return Point(x-a.x,y-a.y);}
ll operator ^ (const Point&a)const{return x*a.y-y*a.x;}
};
typedef Point Vector;
int T,n;
Point p[N];
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
void work(int Sce)
{
scanf("%d",&n);
ll S = ,b = ;
Point s0(,),s1(,),s2(,);
Vector v;
for(int i=;i<=n;i++)
{
scanf("%I64d%I64d",&v.x,&v.y);
ll x = v.x,y = v.y;
if(x<)x=-x;
if(y<)y=-y;
b += gcd(x,y);
s1 = s2,s2 = s2 + v;
S += ((s1-s0)^(s2-s0));
}
if(S<)S=-S;
ll a = (S+-b)/;
printf("Scenario #%d:\n",Sce);
printf("%I64d %I64d ",a,b);
if(S&)printf("%I64d.5\n\n",S/);
else printf("%I64d.0\n\n",S/);
}
int main()
{
scanf("%d",&T);
for(int i=;i<=T;i++)work(i);
return ;
}
poj1265 Area的更多相关文章
- POJ1265 Area 多边形内格点数 Pick公式
POJ1265给定一个多边形 计算边上的格点 内部的格点 以及多边形的面积 利用Pick公式 面积=内部格点数+边上格点数/2-1 将多边形分割为三角形容易证得上述公式 计算面积用叉积,计算边上格点 ...
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...
- POJ1265:Area(多边形面积公式+pick公式) 好题
题目:http://poj.org/problem?id=1265 题意 : 给你一个点阵,上边有很多点连成的多边形,让你求多边形内部的点和边界上的点以及多边形的面积,要注意他每次给出的点并不是点的横 ...
- poj1265&&2954 [皮克定理 格点多边形]【学习笔记】
Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊... Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...
- [转]NopCommerce How to add a menu item into the administration area from a plugin
本文转自:http://docs.nopcommerce.com/display/nc/How+to+code+my+own+shipping+rate+computation+method Go t ...
- ASP.NET MVC系列:Area
1. Area简介 ASP.NET MVC Area机制构建项目,可以将相对独立的功能模块切割划分,降低项目的耦合度. 2. Area设置Routing 新建Admin Area后,自动创建Admin ...
- Web API项目中使用Area对业务进行分类管理
在之前开发的很多Web API项目中,为了方便以及快速开发,往往把整个Web API的控制器放在基目录的Controllers目录中,但随着业务越来越复杂,这样Controllers目录中的文件就增加 ...
- MVC View中获取action、controller、area名称
获取控制器名称: ViewContext.RouteData.Values["controller"].ToString(); 获取Action名称: ViewContext.Ro ...
- [LeetCode] Rectangle Area 矩形面积
Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...
随机推荐
- python 之 匿名函数
5.14 匿名函数 lambda x , y : x+y 1 匿名的目的就是要没有名字,给匿名函数赋给一个名字是没有意义的 2 匿名函数的参数规则.作用域关系与有名函数是一样的 3 匿名函数的函数体通 ...
- symbol lookup error: /lib64/libpango-1.0.so.0: undefined symbol: g_log_structured_standard 错误
通过更新glib2包修复.(yum update glib2)即可 拿走不谢,我也找得好辛苦!!!
- 黑马学习SpringMVC 基本开发步骤
- code blocks无法输出中文解决方法
是CodeBlocks编译器设置问题,在CodeBlocks菜单 settings -> compiler and debugger settings -> global compiler ...
- MySQL创建用户+授权+备份
======权限管理====== 我们知道我们的最高权限管理者是root用户,它拥有着最高的权限操作.包括select.update.delete.update.grant等操作. 那么一般情况在公司 ...
- DotNetAnywhere
DotNetAnywhere:可供选择的 .NET 运行时 原文 : DotNetAnywhere: An Alternative .NET Runtime作者 : Matt Warren译者 : ...
- NET Everywhere
NET Everywhere 8月份已经发布了.NET Core 2.0, 大会Keynote 一开始花了大量的篇幅回顾.NET Core 2.0的发布,社区的参与度已经非常高.大会的主题是.NET ...
- Spring Cloud 熔断器
目录 Spring Cloud 熔断器 Hystrix ribbon中使用hystrix feign中使用hystrix Spring Cloud 熔断器 在微服务架构中,根据业务来拆分成一个个的服务 ...
- Centos 7 搭建git服务器及使用gitolite控制权限
一.安装git yum install git git --version #查看git版本 二.升级git(可选,如果之前已经安装git,需要升级git到最新版本) git clone https: ...
- Windows使用MySQL数据库管理系统中文乱码问题
声明:本文关于MySQL中文乱码问题的解决方案均基于Windows 10操作系统,如果是Linux系统会有较多不适用之处,请谨慎参考. 一.MySQL中文乱码情况 1. sqlDevelper远程登陆 ...