【链接】:CF

【题意】:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite。

【分析】:b的过程是对q约分,那么只要b包含q全部的因子即可。考虑1/q,一定是一个小于等于1的数,考虑将小数转化为b进制的过程,每次将小数乘以b然后取整数部分,直到这个小数变成了0,也就是说如果某个小数1/q在b进制下可以被有限表示。

因此。对于在b进制下的小数p/q,只要看看q的质因子是不是都是b的质因子就可以了,显然可以用gcd来搞。每次都用q去除gcd(q,b)。如果最后q能够变成1.那就说明q的质因子都b的质因子。(gcd本质上就是两个数相同质因子中取指数较小的那个,然后全都乘起来)

但不要每次都重新获取q,b的gcd。用上次的结果尝试继续除就好。

【代码】:

#include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define inf 0x3f3f3f3f
#define pll pair<ll,ll>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep1(i,a,b) for(int i=a;i>=b;i--)
#define rson rt<<1|1,m+1,r
#define lson rt<<1,l,m
using namespace std; int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ll p,q,b;
scanf("%lld%lld%lld",&p,&q,&b);
ll g=__gcd(p,q);
p/=g;
q/=g;
if(p==0||q==1){
printf("Finite\n");
continue;
}
while(q!=1&&b!=1)
{
b=__gcd(q,b);
q/=b;
}
if(q==1) printf("Finite\n");
else printf("Infinite\n");
}
}
/*
2
6 12 10
4 3 10 4
1 1 2
9 36 2
4 12 3
3 5 4
*/

CF984 C. Finite or not?【数论/GCD】的更多相关文章

  1. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  2. cf C. Finite or not? 数论

    You are given several queries. Each query consists of three integers pp, qq and bb. You need to answ ...

  3. 【cf 483 div2 -C】Finite or not?(数论)

    链接:http://codeforces.com/contest/984/problem/C 题意 三个数p, q, b, 求p/q在b进制下小数点后是否是有限位. 思路 题意转化为是否q|p*b^x ...

  4. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  5. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  6. HDU 1722 Cake (数论 gcd)(Java版)

    Big Number 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 ——每天在线,欢迎留言谈论. 题目大意: 给你两个数 n1,n2 . 然后 ...

  7. 数论----gcd和lcm

    gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. ...

  8. hdu 5505(数论-gcd的应用)

    GT and numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  9. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

随机推荐

  1. Hibernate常用方法之_查询

    1.使用session的get方法 public User getUser(int id){ Session session = null; User user = null; try { sessi ...

  2. BZOJ 3668:起床困难综合症(贪心)

    分析:按位贪心即可. program sleep; var a,g:..]of longint; n,i,m,ans,t,len,x,y,v:longint; c:char; s:string; e: ...

  3. BZOJ4361 isn(动态规划+树状数组+容斥原理)

    首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn). 考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!.如果不合法 ...

  4. [模拟赛] StopAllSounds

    Description 小松鼠开心地在树之间跳跃着,突然她停了下来.因为眼前出现了一个 拿着专克超萌小松鼠的法宝----超萌游戏机的游客! 超萌游戏机之所以拥有这个名字,是因为它的屏幕是一个n × 2 ...

  5. SICAU-OJ: A|B

    A|B 题意: 给出一个整数n(1<=n<=10100),求Σd(d满足d可以整除n),同时保证不存在x^2有x^2可以整除n. 另外,n的质因子满足小于等于1000. 题解: 这题是我第 ...

  6. java 保护内存操作的方法

    1.与c++不同,在java中,没有通过使用强制转换指针类型或者通过进行指针运算直接访问内存的方法.在java中使用对象时,需要严格地遵守类型规则.如果存在一个Mountain类对象的引用(类似于c+ ...

  7. 计算1-1/x+1/x*x

    // algo1-1.cpp 计算1-1/x+1/x*x. #include<stdio.h> #include<sys/timeb.h> void main() { time ...

  8. Python基础(7)闭包函数、装饰器

    一.闭包函数 闭包函数:1.函数内部定义函数,成为内部函数, 2.改内部函数包含对外部作用域,而不是对全局作用域名字的引用 那么该内部函数成为闭包函数 #最简单的无参闭包函数 def func1() ...

  9. linux基础(2)

    Linux基础题 作业一:1) 新建用户natasha,uid为1000,gid为555,备注信息为“master”useradd natashagroupmod -g 555 natashauser ...

  10. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...