[HAOI2010]计数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 451  Solved: 289
[Submit][Status][Discuss]

Description

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

 

Input

只有1行,为1个整数n.

 

Output

只有整数,表示N之前出现的数的个数。

Sample Input

1020

Sample Output

7

HINT

n的长度不超过50,答案不超过263-1.

Source

这个就是一个简单的组合计数问题。

 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<algorithm> #define N 57
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n;
int cnt[N];
ll ans,c[N][N];
char ch[N]; void init_C()
{
c[][]=;
for (int i=;i<=;i++)
{
c[i][]=;
for (int j=;j<=i;j++)
c[i][j]=c[i-][j-]+c[i-][j];
}
}
ll cal(int x)
{
ll res=;
int now=x;
for (int j=;j<;j++)
res*=c[now][cnt[j]],now-=cnt[j];
return res;
}
int main()
{
init_C(),scanf("%s",ch+),n=strlen(ch+);
for (int i=;i<=n;i++) ++cnt[ch[i]-''];
for (int i=;i<=n;i++)
{
for (int j=;j<=(ch[i]-'')-;j++)
if (cnt[j])
{
--cnt[j];
ans+=cal(n-i);
++cnt[j];
}
--cnt[ch[i]-''];
}
printf("%lld\n",ans);
}

bzoj 2425 [HAOI2010]计数 dp+组合计数的更多相关文章

  1. 3.29省选模拟赛 除法与取模 dp+组合计数

    LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...

  2. BZOJ 2425 [HAOI2010]计数:数位dp + 组合数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意: 给你一个数字n,长度不超过50. 你可以将这个数字: (1)去掉若干个0 ( ...

  3. BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]

    http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...

  4. BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]

    2302: [HAOI2011]Problem c Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 648  Solved: 355[Submit][S ...

  5. BZOJ.4402.Claris的剑(组合 计数)

    BZOJ 因为是本质不同,所以考虑以最小字典序计数. 假设序列最大值为\(m\),那么序列有这两种情况: \(1\ (1\ 2\ 1\ 2...)\ 2\ (3\ 2\ 3\ 2...)\ 3\ (4 ...

  6. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  7. 牛客国庆集训派对Day3 B Tree(树形dp + 组合计数)

    传送门:https://www.nowcoder.com/acm/contest/203/B 思路及参考:https://blog.csdn.net/u013534123/article/detail ...

  8. ZOJ-3380 Patchouli’s Spell Cards DP, 组合计数

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3380 题意:有m种不同的元素,每种元素都有n种不同的相位,现在假 ...

  9. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

随机推荐

  1. Make命令完全详解教程

    Make命令完全详解教程 无论是在Linux还是在Unix环境中,make都是一个非常重要的编译命令.不管是自己进行项目开发还是安装应用软件,我们都经常要用到make或make install.利用m ...

  2. C语言实例解析精粹学习笔记——43(希尔排序)

    实例说明: 用希尔排序方法对数组进行排序.由于书中更关注的实例,对于原理来说有一定的解释,但是对于第一次接触的人来说可能略微有些简略.自己在草稿纸上画了好久,后来发现网上有好多很漂亮的原理图. 下面将 ...

  3. C中 snprintf()函数的作用

    函数原型:int snprintf(char* dest_str,size_t size,const char* format,...); 函数功能:先将可变参数 “…” 按照format的格式格式化 ...

  4. 安装 Node.js v8.0 生产环境

    步骤://center os 上把apt-get换成yum 第一步:进入服务器升级工具包 sudo apt-get update 第二步:安装git  sudo apt-get install git ...

  5. HyperLedger Fabric 1.4 超级账本组织(5.3)

    超级账本组织分为TSC(技术指导委员会).Governing Board(董事会成员).LF Staffs(工作人员)三个组织,组织架构图如下: TSC:技术指导委会员,主导社区的开发工作,下设多个工 ...

  6. Java8新特性(三)——Optional类、接口方法与新时间日期API

    一.Optional容器类 这是一个可以为null的容器对象.如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象. 查看结构图可以看到有如下常用方法: of(T)—— ...

  7. shell -- if参数用法

    一.概要1.if与[之间要有空格2.[]与判断条件之间也必须有空格3.]与:之间不能有空格 二.对字符串的判断1.if [ str1=str2 ];then fi  ----当两个字符串相同时返回真2 ...

  8. CC3200模块的内存地址划分和bootloader(一)

    1. CC3200的内存地址划分非常特殊,如果没测试的话,很容易懵逼.我们先看芯片手册里面的内存地址.芯片的RAM是256KB,下图的0x2000 0000-0x2003 FFFF,正好是256KB. ...

  9. Bit-map法处理大数据问题

    问题引入: 1.给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?2.给定一个千万级别数据量的整数集合,判断哪些是重复元素.3.给 ...

  10. 零基础学习Vim编辑器

    **********************************************************************0.这篇教程的简介:Vim是Linux/Unix下的经典编辑 ...