[USACO Special 2007 Chinese Competition]The Bovine Accordion and Banjo Orchestra
[原题描述以及提交地址]:http://acm.tongji.edu.cn/problem?pid=10011
[题目大意]
给定两个长度为N的序列,要给这两个序列的数连线。连线只能在两个序列之间进行,且连线不能交叉,每个数最多只能选一次。连线从左到右进行,每次连线收益为这两个数的乘积。对于两个序列,都有:每段连续的没被选中的数的和的平方为损失。
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
防剧透
[解题思路]
O(n^4):
f[i][j]代表a序列前i个数,b序列前j个数中i,j必选所得到的最优收益。
f[i][j] = a[i] * b[j] + max(f[k][l] - (suma[i - 1] - suma[k])^2 - (sumb[j - 1] - sumb[l])^2) {0 < k < i, 0 < l < j}
===================================================================================
O(n^3):
可以发现对于k + 1...i 以及 l + 1...j 这两段数之间可以再连线,而且答案不会更劣。
于是有k == i - 1 or l == j - 1
f[i][j] = a[i] * b[j] + max(f[k][j - 1] - (suma[i - 1] - suma[k])^2,f[i - 1][l] - (sumb[j - 1] - sumb[l])^2) {0 < k < i, 0 < l < j}
===================================================================================
O(n^2):
事实上以上的方程是可以用斜率优化的。只不过是同时依赖于两个斜率优化方程而已。于是,对于每个i,j开一个单调队列,维护即可。
===================================================================================
Postscript:打斜率优化的时候一定要注意等号,而且最好从凸包的角度来理解,来实现,比较不容易出错。
#include <cstdio>
#include <algorithm>
#include <deque>
const int N = 1000 + 9;
typedef long long ll;
int n,a[N],b[N],i,j,t;
ll suma[N],sumb[N],f[N][N];
std::deque<int> qi[N],qj[N];
inline ll sqr(const ll x){return x*x;}
inline ll calci(const int x)
{return f[i - 1][x] - sqr(sumb[j - 1] - sumb[x]);}
inline ll calcj(const int x)
{return f[x][j - 1] - sqr(suma[i - 1] - suma[x]);}
inline ll Xi(const int k,const int l)
{return f[i - 1][k] - sqr(sumb[k]) - (f[i - 1][l] - sqr(sumb[l]));}
inline ll Yi(const int k,const int l)
{return sumb[l] - sumb[k];}
inline ll Xj(const int k,const int l)
{return f[k][j - 1] - sqr(suma[k]) - (f[l][j - 1] - sqr(suma[l]));}
inline ll Yj(const int k,const int l)
{return suma[l] - suma[k];}
int main()
{
#ifndef ONLINE_JUDGE
freopen("sxbk.in","r",stdin);
freopen("sxbk.out","w",stdout);
#endif
scanf("%d",&n);
for (i = 1; i <= n; ++i) {
scanf("%d",a+i);
suma[i] = suma[i - 1] + a[i];
}
for (i = 1; i <= n; ++i) {
scanf("%d",b+i);
sumb[i] = sumb[i - 1] + b[i];
}
for (i = 1; i <= n; ++i) {
for (j = 1; j <= n; ++j) {
while (qi[i - 1].size() > 1 && calci(qi[i - 1].front()) <= calci(qi[i - 1][1])) qi[i - 1].pop_front();
while (qj[j - 1].size() > 1 && calcj(qj[j - 1].front()) <= calcj(qj[j - 1][1])) qj[j - 1].pop_front();
f[i][j] = - sqr(suma[i - 1]) - sqr(sumb[j - 1]);
if ((i - 1) && qi[i - 1].size()) f[i][j] = std::max(f[i][j],calci(qi[i - 1].front()));
if ((j - 1) && qj[j - 1].size()) f[i][j] = std::max(f[i][j],calcj(qj[j - 1].front()));
f[i][j] += a[i] * b[j];
while ((t = qi[i - 1].size()) > 1 && Xi(qi[i - 1][t - 2],qi[i - 1].back()) * Yi(qi[i - 1].back(),j) >= Xi(qi[i - 1].back(),j) * Yi(qi[i - 1][t - 2],qi[i - 1].back())) qi[i - 1].pop_back();
while ((t = qj[j - 1].size()) > 1 && Xj(qj[j - 1][t - 2],qj[j - 1].back()) * Yj(qj[j - 1].back(),i) >= Xj(qj[j - 1].back(),i) * Yj(qj[j - 1][t - 2],qj[j - 1].back())) qj[j - 1].pop_back();
if (i - 1) qi[i - 1].push_back(j);
if (j - 1) qj[j - 1].push_back(i);
}
}
ll ans = -0x7fffffff;
for (int i = 1; i <= n; ++i)
ans = std::max(ans,std::max(f[i][n] - sqr(suma[n] - suma[i]),f[n][i] - sqr(sumb[n] - sumb[i])));
printf("%I64d\n",ans);
}
[USACO Special 2007 Chinese Competition]The Bovine Accordion and Banjo Orchestra的更多相关文章
- 【BZOJ1713】[Usaco2007 China]The Bovine Accordion and Banjo Orchestra 音乐会 斜率优化
[BZOJ1713][Usaco2007 China]The Bovine Accordion and Banjo Orchestra 音乐会 Description Input 第1行输入N,之后N ...
- BZOJ_1713_[Usaco2007 China]The Bovine Accordion and Banjo Orchestra 音乐会_斜率优化
BZOJ_1713_[Usaco2007 China]The Bovine Accordion and Banjo Orchestra 音乐会_斜率优化 Description Input 第1行输入 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- [Elite 2008 Dec USACO]Jigsaw Puzzles
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #def ...
- Delphi QC 记录
各网友提交的 QC: 官方网址 说明 备注 https://quality.embarcadero.com/browse/RSP-12985 iOS device cannot use indy id ...
- TOJ1693(Silver Cow Party)
Silver Cow Party Time Limit(Common/Java):2000MS/20000MS Memory Limit:65536KByte Total Submit: ...
- 一些基于jQuery开发的控件
基于jQuery开发,非常简单的水平方向折叠控件.主页:http://letmehaveblog.blogspot.com/2007/10/haccordion-simple-horizontal-a ...
- TOJ 1690 Cow Sorting (置换群)
Description Farmer John's N (1 ≤ N ≤ 10,000) cows are lined up to be milked in the evening. Each cow ...
- TOJ1698: Balanced Lineup
Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same ...
随机推荐
- Website Collection
前一百个卡特兰数 Candy?的博弈论总结 杜教筛资料 线性基资料 (ex)BSGS资料 斐波那契数列前300项 斯特林数 STL标准库-容器-unordered_set C++ unordered_ ...
- JS Cookie相关操作
function setCookie(cookieName, cookieValue, expires) { // 设置Cookie function getCookieName(cookieName ...
- HDU 2639 01背包求第k大
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- python3创建目录
感觉python3最好用的创建目录函数是os.makedirs,它可以设置在多级目录不存在时自动创建,已经存在也不抛出异常. import os os.makedirs('hello/hello1/h ...
- Java输入输出流备忘
重要博客: http://blog.csdn.net/hguisu/article/details/7418161 File dir = new File("\\root"); ...
- HDU1025---(LIS 最长上升子序列 的应用)
分析: n行 每行包含两个整数p r;意思是p从到r 不能有交叉的路 p刚好从1->n, 可看做下标,到的地方看做值 就转化为了最长上升子序列的问题 此题难点,怎么将其转化为LIS问题 #inc ...
- php windows rename 中文出错
php windows rename 中文出错 rename()函数可以重命名文件.目录等,但是要注意目的地和起始地址的编码. 比如:我的PHP文件编码是UTF-8,但是在WINDOW系统中中文默认编 ...
- python并发进程
1 引言 2 创建进程 2.1 通过定义函数的方式创建进程 2.2 通过定义类的方式创建进程 3 Process中常用属性和方法 3.1 守护进程:daemon 3.2 进程终结于存活检查:termi ...
- 【BZOJ1857】【SCOI2010】传送带 [三分]
传送带 Time Limit: 1 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description 在一个2维平面上有两条传送带,每一条传送 ...
- C# 文件类的操作---获取
如何获取指定目录包含的文件和子目录 . DirectoryInfo.GetFiles():获取目录中(不包含子目录)的文件,返回类型为FileInfo[],支持通配符查找: . DirectoryIn ...