【莫队算法】【权值分块】bzoj2223 [Coci 2009]PATULJCI
不带修改主席树裸题<=>莫队+权值分块裸题。
复杂度O(m*sqrt(n))。
P.S.题目描述坑爹,第二个数是权值的范围。
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define N 300001
#define M 10001
int f,c;
inline void R(int &x){
c=0;f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())(x*=10)+=(c-'0');
x*=f;
}
void P(int x){
if(x<10)putchar(x+'0');
else{P(x/10);putchar(x%10+'0');}
}
int sum=1,Lim,l[105],n,m,num[10001],r[105],cnts[105],a[N],b[10001],anss[M],num2[N];
struct Ask{int l,r,p;}Q[M];
bool operator < (const Ask &a,const Ask &b)
{return num2[a.l]!=num2[b.l] ? num2[a.l]<num2[b.l] : a.r<b.r;}
void val_mb()
{
int sz=sqrt(Lim); if(!sz) sz=1;
for(;sum*sz<Lim;++sum)
{
l[sum]=r[sum-1]+1; r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
}
l[sum]=r[sum-1]+1; r[sum]=Lim;
for(int i=l[sum];i<=Lim;++i) num[i]=sum;
}
void mo_mb()
{
int tot=1,sz=sqrt(n); if(!sz) sz=1;
for(;tot*sz<n;++tot)
{
int r=tot*sz;
for(int i=(tot-1)*sz+1;i<=r;++i) num2[i]=tot;
}
for(int i=(tot-1)*sz+1;i<=n;++i) num2[i]=tot;
}
void Insert(const int &x){++b[x]; ++cnts[num[x]];}
void Delete(const int &x){--b[x]; --cnts[num[x]];}
int Query(const int &L,const int &R)
{
int goal=(R-L+1>>1);
for(int j=1;j<=sum;++j) if(cnts[j]>goal)
for(int i=l[j];i<=r[j];++i) if(b[i]>goal) return i;
return -1;
}
int main()
{
R(n); R(Lim); for(int i=1;i<=n;++i) R(a[i]);
val_mb(); R(m);
for(int i=1;i<=m;++i) R(Q[i].l),R(Q[i].r),Q[i].p=i;
mo_mb(); sort(Q+1,Q+m+1);
for(int i=Q[1].l;i<=Q[1].r;++i) Insert(a[i]);
anss[Q[1].p]=Query(Q[1].l,Q[1].r);
for(int i=2;i<=m;++i)
{
if(Q[i].l<Q[i-1].l) for(int j=Q[i-1].l-1;j>=Q[i].l;--j) Insert(a[j]);
else for(int j=Q[i-1].l;j<Q[i].l;++j) Delete(a[j]);
if(Q[i].r<Q[i-1].r) for(int j=Q[i-1].r;j>Q[i].r;--j) Delete(a[j]);
else for(int j=Q[i-1].r+1;j<=Q[i].r;++j) Insert(a[j]);
anss[Q[i].p]=Query(Q[i].l,Q[i].r);
}
for(int i=1;i<=m;++i)
if(anss[i]==-1) puts("no");
else {printf("yes "); P(anss[i]); puts("");}
return 0;
}
【莫队算法】【权值分块】bzoj2223 [Coci 2009]PATULJCI的更多相关文章
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- 莫队算法 sqrt(n)分块思想
在此说一下本渣对莫队算法思想的一些浅薄理解 莫队算法的思想就是对真个区间的分块,然后按照每块来分别进行计算,这样最终的复杂度可以达到n*sqrt(n) 小Z的袜子是一道非常经典的题目.:题目链接htt ...
- Luogu 1494 - 小Z的袜子 - [莫队算法模板题][分块]
题目链接:https://www.luogu.org/problemnew/show/P1494 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天 ...
- 莫队或权值线段树 或主席树 p4137
题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入格式 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l,r. 输出格式 ...
- BZOJ2223[Coci 2009]PATULJCI——主席树
题目描述 输入 先输入一个数n,然后一个数表示这n个数中最大的是多少,接下来一行n个数.然后一个数m,最后m行询问每次两个数l,r. 输出 no或者yes+这个数 样例输入 10 3 1 2 1 2 ...
- 2018.09.30 bzoj2223: [Coci 2009]PATULJCI(主席树)
传送门 主席树经典题目. 直接利用主席树差分的思想判断区间中数的个数是否合法然后决定左走右走就行了. 实际上跟bzoj3524是同一道题. 代码: #include<bits/stdc++.h& ...
- BZOJ2223 [Coci 2009]PATULJCI
求区间内个数大于rank的一个数 主席树求一下就好啦! /************************************************************** Problem: ...
- 【BZOJ】4358: permu 莫队算法
[题意]给定长度为n的排列,m次询问区间[L,R]的最长连续值域.n<=50000. [算法]莫队算法 [题解]考虑莫队维护增加一个数的信息:设up[x]表示数值x往上延伸的最大长度,down[ ...
- 【莫队算法】【权值分块】bzoj3920 Yuuna的礼物
[算法一] 暴力. 可以通过第0.1号测试点. 预计得分:20分. [算法二] 经典问题:区间众数,数据范围也不是很大,因此我们可以: ①分块,离散化,预处理出: <1>前i块中x出现的次 ...
随机推荐
- 免费的dns服务器(更换dns服务器有时可以解决某些网站(如爱奇艺访问不了的问题))
首先百度提供的dns就是非常好用的dns,小编就把百度的dns作为首选180.76.76.76. 其次是阿里提供的dns223.5.5.5,响应速度非常的快,而且没有广告劫持. 再就是最通用的 ...
- [poj 2342]简单树dp
题目链接:http://poj.org/problem?id=2342 dp[i][0/1]表示以i为根的子树,选或不选根,所能得到的最大rating和. 显然 dp[i][0]=∑max(dp[so ...
- linux 学习好资源
Linux-Wiki.cn http://linux-wiki.cn/wiki/zh-hans/Linux%E7%9B%AE%E5%BD%95%E7%BB%93%E6%9E%84 Linux目录 ...
- Windows下安装Mycat-web
Mycat-web是基于Mycat的一个性能监控工具,如:sql性能监控等. 在安装Mycat-web之前需要先安装Zookeeper: 可参考: http://blog.csdn.net/tlk20 ...
- es6+最佳入门实践(6)
6.Symbol用法 6.1.什么是Symbol? Symbol是es6中一种新增加的数据类型,它表示独一无二的值.es5中我们把数据类型分为基本数据类型(字符串.数字.布尔.undefined.nu ...
- Html 让文字显示在图片的上面
如题: 第一种方式便是将 image 作为背景图片,即:background-image:url("......."); 在此可以控制背景图片的横向和纵向的平铺: backgrou ...
- IDEA新建时选项没有java class问题
解决办法: 点击你的project F4打开project stucture 点击左边的module 点击右边的source后添加src就可以了 添加的src就是源码可以放置的地址
- python 写 excel 模块 : xlwt
主要来自:[ python中使用xlrd.xlwt操作excel表格详解 ] 为了方便阅读, 我将原文两个模块拆分为两篇博文: [ python 读 excel 模块: xlrd ] [ python ...
- [bzoj3224]Tyvj 1728 普通平衡树——splay模板
题目 你需要写一种数据结构支援以下操作. 插入元素. 删除元素. 查询元素的排名. 查询第k小的元素. 查询元素前趋. 查询元素后继. 题解 BBST裸题. 代码 #include <cstdi ...
- 如何加快Eclipse的启动速度?
http://it.taocms.org/12/6457.htm 浅析配置更快的Eclipse方法 What is the Metadata GC Threshold and how do I tun ...