一、最长上升子序列(LIS)

  给定n个整数A1,A2,…,An,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变)。例如序列1,6,2,3,7,5,可以选出上升子序列1,2,3,5,也可以选出1,6,7,但前者更长。选出的上升子序列中相邻元素不能相等。

  分析:设d(i)为以i结尾的最长上升子序列的长度,则d(i)= max{0,d(j)|j<i,Aj<Ai}+1,最终答案是max{d(i)}。如果LIS中的相邻元素可以相等,把<改成<=即可。上述算法的时间复杂度为O(n2)。《算法竞赛入门经典》中介绍了一种方法把它优化到O(nlogn),可以去阅读。

二、最长公共子序列问题(LCS)

  给两个子序列A和B,A为abcbdab,B为bdcaba。求长度最长的公共子序列。例如1,5,2,6,8,7和2,3,5,6,9,8,4的最长公共子序列为5,6,8(另一个解是2,6,8)。

  分析:设d(i , j)为A1,A2,…,Ai和B1,B2,…,Bj的LCS长度,则当A[i]=A[j]时d(i , j)= d(i-1, j-1)+1,否则d(i , j)= max{d(i-1, j),d(i , j-1)},时间复杂度为O(nm),其中n和m分别是序列A和B的长度。

DP入门(4)——线性结构上的动态规划的更多相关文章

  1. 紫书 例题 9-7 UVa 11584 (线性结构上的动态规划)

    这道题判断回文串的方法非常的秀! 这里用到了记忆化搜索,因为会有很多重复 同时用kase来区分每一组数据 然后还有用递归来判断回文,很简洁 然后这种线性结构的动态规划的题,就是把 当前的这个数组分成两 ...

  2. 【线性结构上的动态规划】UVa 11584 - Partitioning by Palindromes

    回文串问题.给出一个字符串,问最少可以划分为多少个字符串子串. 对于判断是否为回文串,对于不是很长的字符串,可以采取直接暴力,即从两边向中间收缩判断字符相等. bool is_pali(int l, ...

  3. 【线性结构上的动态规划】UVa 11400 - Lighting System Design

    Problem F Lighting System Design Input: Standard Input Output: Standard Output You are given the tas ...

  4. 紫书 例题 9-6 UVa 11400 (线性结构上的动态规划)

    这道题的下标从1开始比较方便,一方面前缀和算的方便一些,一方面涉及到前j 个灯泡,那么如果从0开始,前3个灯泡就是第0, 1, 2, 3个,非常奇怪. 所以灵活换下标. 然后这道题的动规有点暴力枚举的 ...

  5. dp入门——由分杆问题认识动态规划

    简介 如果你常刷leetcode,会发现许多问题带有Dynamic Programming的标签.事实上带有dp标签的题目有115道,大部分为中等和难题,占所有题目的12.8%(2018年9月),是占 ...

  6. 【DP】区间DP入门

    在开始之前我要感谢y总,是他精彩的讲解才让我对区间DP有较深的认识. 简介 一般是线性结构上的对区间进行求解最值,计数的动态规划.大致思路是枚举断点,然后对断点两边求取最优解,然后进行合并从而得解. ...

  7. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

  8. 树形DP入门详解+题目推荐

    树形DP.这是个什么东西?为什么叫这个名字?跟其他DP有什么区别? 相信很多初学者在刚刚接触一种新思想的时候都会有这种问题. 没错,树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上. 既 ...

  9. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

随机推荐

  1. Vue nodejs商城项目-商品的分页、排序、筛选

    .分页 ,要查第3页的数据,则跳过2*8条数据,然后返回8条数据. 在实现滚动加载时,页面刚一加载完成并不需要请求所有数据,当用户下拉到页面底部时,再去请求数据并拼接到商品数据列表中. 通过vue-i ...

  2. bootstrapTable 问题

    bootstrapTable引用问题 $("#table").bootstrapTable({ // 对应table标签的id method: 'post', url: 'abc' ...

  3. 轻量ORM-SqlRepoEx (二)初始化SqlRepoEx

    一.SqlRepoEx引用 暂时没放至nuget上,可以直接到https://github.com/AzThinker/SqlRepoEx下载源码,编译引用. (一).静态引用 1.需引用以下dll在 ...

  4. 02-第一个iOS程序

    第一个iOS程序 第一个iOS程序简介 初学iOS开发,研究的程序不要过于复杂,应该从最基本的开始 大房子都是由小砖一块一块堆成的,而大型app是由无数个小程序段组成的 接下来实现一个简单的“加法计算 ...

  5. BZOJ1030: [JSOI2007]文本生成器(AC自动机)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5984  Solved: 2523[Submit][Status][Discuss] Descripti ...

  6. Linux入门-第五周

    1.磁盘lvm管理,完成下面要求,并写出详细过程: 1) 创建一个至少有两个PV组成的大小为20G的名为testvg的VG;要求PE大小 为16MB, 而后在卷组中创建大小为5G的逻辑卷testlv; ...

  7. CentOS7下rsync服务的基本详解和使用

    第1章 Rsync基本概述 1.1 什么是Rsync rsync是一款开源,快速,多功能的可实现增量的本地或远程的数据镜像同步备份的优秀工具.适用于多个平台.从软件名称可以看出来是远程同步的意思(re ...

  8. Python3 operator模块关联代替Python2 cmp() 函数

    Python2 cmp() 函数 描述 cmp(x,y) 函数用于比较2个对象,如果 x < y 返回 -1, 如果 x == y 返回 0, 如果 x > y 返回 1. Python ...

  9. 12.2.1 访问元素的样式【JavaScript高级程序设计第三版】

    任何支持style 特性的HTML 元素在JavaScript 中都有一个对应的style 属性.这个style 对象是CSSStyleDeclaration 的实例,包含着通过HTML 的style ...

  10. 3D Food Printing【3D食物打印】

    3D Food Printing There's new frontier in 3D printing that's begining to come into focus: food. 3D打印的 ...