GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2257    Accepted Submission(s): 908

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No? Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!
 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1788 1695 1573 1905 1299 

模板题:

 //0MS    200K    399 B    G++
#include<stdio.h>
int euler(int n)
{
int ret=;
for(int i=;i*i<=n;i++){
if(n%i==){
n/=i;ret*=i-;
while(n%i==){
n/=i;ret*=i;
}
}
}
if(n>) ret*=n-;
return ret;
}
int main(void)
{
int n;
while(scanf("%d",&n),n)
{
printf("%d\n",n-euler(n)-);
}
return ;
}

hdu 1787 GCD Again (欧拉函数)的更多相关文章

  1. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  4. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  5. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

  7. hdu 1695 GCD (欧拉函数、容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  9. (hdu step 7.2.2)GCD Again(欧拉函数的简单应用——求[1,n)中与n不互质的元素的个数)

    题目: GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. 使用Cygwin在WIN系统下处理文本常用命令

    1.打开Cygwin,把需要处理的文本复制你的安装目录例如:D:\cygwin\home\Administrator 使用 ls命令查看根目录文件 2.现在我们就可以对1.txt文本进行操作, 3.我 ...

  2. 序列化serialize()与反序列化unserialize()的实例

    在写序列化serialize与反序列化unserialize()时,我们先来看看: serialize - 产生一个可存储的值的表示 描述 string serialize ( mixed $valu ...

  3. python查询mysql数据

    >>>cur.execute("select * from 表名") >>>lines=cur.fetchall() >>>f ...

  4. List排序方法

    可用使用Collections.sort(List<T> list)和Collections.sort(List<T> list, Comparator<? super ...

  5. python2.7练习小例子(二十八)

    28):题目:请输入星期几的第一个字母来判断一下是星期几,如果第一个字母一样,则继续判断第二个字母.     程序分析:用情况语句比较好,如果第一个字母一样,则判断用情况语句或if语句判断第二个字母. ...

  6. kafka topic 完全删除

    kafka topic 完全删除   1.自动删除脚本(得配置server.properties 中 delete.topic.enable=true) ./kafka-topics.sh --zoo ...

  7. HashMap源码注释翻译

    HashMap.java(JDK1.8) 如有错误翻译的地方,欢迎评论指出. 介绍:对于HashMap及其子类而言,它们采用Hash算法来决定集合中元素的存储位置.当系统开始初始化HashMap时,系 ...

  8. 年薪20万Python工程师进阶(7):Python资源大全,让你相见恨晚的Python库

    我是 环境管理 管理 Python 版本和环境的工具 pyenv – 简单的 Python 版本管理工具. Vex – 可以在虚拟环境中执行命令. virtualenv – 创建独立 Python 环 ...

  9. ASP.NET Web API 2 返回 Json格式

    最近在学习ASP.NET的Web API,刚刚开始以为会有些复杂,结果却非常简单. 学习的地址:http://www.asp.net/web-api/overview/getting-started- ...

  10. (4)分布式下的爬虫Scrapy应该如何做-规则自动爬取及命令行下传参

    本次探讨的主题是规则爬取的实现及命令行下的自定义参数的传递,规则下的爬虫在我看来才是真正意义上的爬虫. 我们选从逻辑上来看,这种爬虫是如何工作的: 我们给定一个起点的url link ,进入页面之后提 ...