题目大意:一开始有 $2n$ 张牌,每张牌上都写着一个数字 $w_i$,有两种的牌,每种类型各 $n$ 张:

1.攻击牌:打出后对对方造成牌上的数字的伤害。

2.强化牌:打出后,设数字为 $x$,则其他剩下的攻击牌的数字都会乘上 $x$。保证强化牌上的数字都大于$1$。

现在会等概率随机从卡组中抽出 $m$ 张牌,但最多打出 $k$ 张牌,假设会采取能造成最多伤害的策略,求她期望造成多少伤害。

题解:发现有若可以的话,先从大到小打强化牌,再从大到小打攻击牌(至少打一张),这样会造成最大伤害,然后我就不会了。。。

卡点:

C++ Code:

#include <cstdio>
#include <algorithm>
#define maxn 3010
#define int long long
using namespace std;
const int mod = 998244353;
int Tim, n, m, k;
int a[maxn], b[maxn];
int fac[maxn], inv[maxn];
int f[maxn][maxn], g[maxn][maxn];
int sf[maxn][maxn], sg[maxn][maxn];
inline bool cmp(int a, int b) {return a > b;}
int C(int a, int b) {
if (b > a) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
int F(int a, int b) {
if (a < b) return 0;
int ans = 0;
for (int i = 0; i <= n; i++) ans = (ans + f[b][i] * C(n - i, a - b)) % mod;
return ans;
}
int G(int a, int b) {
if (a < b) return 0;
int ans = 0;
for (int i = 0; i <= n; i++) ans = (ans + g[b][i] * C(n - i, a - b)) % mod;
return ans;
}
signed main() {
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for (int i = 2; i <= maxn; i++) {
fac[i] = fac[i - 1] * i % mod;
inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}
for (int i = 2; i <= maxn; i++) inv[i] = inv[i] * inv[i - 1] % mod;
scanf("%lld", &Tim);
while (Tim --> 0) {
scanf("%lld%lld%lld", &n, &m, &k);
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]);
sort(a + 1, a + n + 1, cmp);
f[0][0] = 1;
for (int i = 0; i <= n; i++) sf[0][i] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = a[j] * sf[i - 1][j - 1] % mod;
sf[i][j] = (sf[i][j - 1] + f[i][j]) % mod;
}
}
for (int i = 1; i <= n; i++) scanf("%lld", &b[i]);
sort(b + 1, b + n + 1, cmp);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
g[i][j] = (b[j] * C(j - 1, i - 1) + sg[i - 1][j - 1]) % mod;
sg[i][j] = (sg[i][j - 1] + g[i][j]) % mod;
}
}
int ans = 0;
for (int i = 0; i <= m; i++) {
if (i < k) ans = (ans + F(i, i) * G(m - i, k - i)) % mod;
else ans = (ans + F(i, k - 1) * G(m - i, 1)) % mod;
}
printf("%lld\n", ans);
}
return 0;
}

  

[LOJ #2538][PKUWC 2018]Slay the Spire的更多相关文章

  1. LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)

    Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spi ...

  2. loj #2538. 「PKUWC2018」Slay the Spire

    $ \color{#0066ff}{ 题目描述 }$ 九条可怜在玩一个很好玩的策略游戏:Slay the Spire,一开始九条可怜的卡组里有 \(2n\) 张牌,每张牌上都写着一个数字\(w_i\) ...

  3. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  4. LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)

    题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...

  5. LOJ #2540. 「PKUWC 2018」随机算法(概率dp)

    题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...

  6. PKUWC 2018游记

    PKUWC 2018游记 标签: Day\([-inf,0)\) 停课之后一直各种浪的飞起,考试rank20+,不搞颓但是学习很没有状态.还经常带着耳机被谢总抓了好几次,然后被拉过去谈话了好几次... ...

  7. PKUWC 2018 铁牌记

    Day –INF: 联赛后根据分数一部分人继续停课.由于本蒟蒻撞上了狗屎运,联赛分数还行,可参加NOIWC和PKUWC,故继续停课训练.期间补全了一堆知识点,并成功翘掉期末考.(然而该还的还是要还的, ...

  8. A Dream (PKUWC 2018)

    A Dream (PKUWC 2018) 这是一个梦. 从没有几分节日气氛的圣诞,做到了大雪纷飞的数九寒天. 忘了罢! 不记得时间,不记得地点.随着记忆的褪去,一切也只会不复存在. Day-34? D ...

  9. $PkuWc\ 2018$ 酱油记

    PkuWc 2018 酱油记 1. Day -INF 又停了一个月课...... 感觉这个月的收获还是蛮大的,刚来的时候还只会线段树,到现在LCT都学了... 这个月不停在考试,自己考试技巧也提升了不 ...

随机推荐

  1. vue服务端渲染浏览器端缓存(keep-alive)

    在使用服务器端渲染时,除了服务端的接口缓存.页面缓存.组建缓存等,浏览器端也避免不了要使用缓存,减少页面的重绘. 这时候我们就会想到vue的keep-alive,接下来我们说一下keep-alive的 ...

  2. BootCDNApi使用记录

    通过API获取BootCDN所加速的所有前端开源库的基本信息和文件列表 API 将一下API链接中的.min字样去掉后,获取到的JSON格式的返回信息是经过良好的格式化的,便于查看. 所有开源库简要信 ...

  3. (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  4. fiddler手机抓包配置方法

    一.下载工具包 百度搜索”fiddler 下载“ ,安装最新版本 下载的软件安装包为“fiddler_4.6.20171.26113_setup.exe”格式,双击安装.安装成功,在“开始”-“所有程 ...

  5. Django学习之天气调查实例(3):部署静态文件CSS、JS、images等(部署环境基于Ubuntu)

    在设计登录界面时,采用了网上下载的登录模板,漂亮,简易.但是在测试和部署时,发现原来模板中采用的js文件和css文件,却着实让我折腾了好几天. 在以往的网页设计中,一般只要把测试站点开启后,网页中的静 ...

  6. Java:详解内部类

    可以将一个类的定义放在另一个类的定义内部,这就是内部类. 内部类是一个非常有用的特性但又比较难理解使用的特性(鄙人到现在都没有怎么使用过内部类,对内部类也只是略知一二). 第一次见面 内部类我们从外面 ...

  7. CDH,CM下载

    wget -c -r -nd -np -k -L -A rpm http://archive-primary.cloudera.com/cdh5/parcels/latest/ http://arch ...

  8. Java 基础------16进制转2进制

    我们知道,数字8用二进制表示为:1000 用16进制表示为:8 那么我给你一个16进制的数字,0x7f,他的二进制是什么呢? 一个16进制的位数,用4位表示.比如,0x 7 f 其中: 7用4位二进制 ...

  9. nexys4-DDR开发板温度传感器ADT7420U

    1. 用这个板子做个什么功能来学习?板子上有个温度传感器,看下官方是否有例程,板子售价1780元,相当的贵,下面是I2C接口, 看下芯片的引脚图 2. 资料下载地址,得注册账号 https://ref ...

  10. 通过修改Host文件解决主机头访问网站的问题

             网站打包发布后,一般都是通过IP地址来进行访问,但是这样不方便记忆.如何设置一个简单的域名,然后通过域名来进行访问呢?一个可行的方法就是修改本机的host文件,添加一条映射关系,把这 ...