P3674 小清新人渣的本愿 莫队+bitset
ennmm...bitset能过系列。
莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\)
维护一个正向的 bitset <N> mem ,再维护一个反向的 bitset <N> mem1,即 mem1[N-x]=mem[x];
对于 \(-\) 直接 mem&mem<<x 就是相差 \(x\) 的两个点 与 一下
对于 \(+\) 直接 mem&mem1<<(N-x) 因为原来 mem[i] 代表 i , mem1[i] 代表 N-i,所以没有位移时对应位置 与 一下就是是否存在两个数加起来 \(= N\)
对于 \(\times\) 暴力枚举约数即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<bitset>
#include<vector>
#define R register int
using namespace std;
namespace Luitaryi {
inline int g() { R x=0,f=1;
register char s; while(!isdigit(s=getchar())) f=s=='-'?-1:f;
do x=x*10+(s^48); while(isdigit(s=getchar())); return x*f;
} const int N=100005;
int n,m,B,mx,a[N],c[N],pos[N];
bool ans[N];
struct node { int op,l,r,x,id;
inline bool operator < (const node& that) const
{return pos[l]==pos[that.l]?(pos[l]&1)?r<that.r:r>that.r:l<that.l;}
}q[N];
bitset <N> mem,mem1;
inline void add(int x) {if(++c[x]==1) mem[x]=1,mem1[N-x]=1;}
inline void sub(int x) {if(--c[x]==0) mem[x]=0,mem1[N-x]=0;}
inline bool cadd(int x) {return (mem&(mem1>>N-x)).any();}
inline bool csub(int x) {return (mem&(mem<<x)).any();}
inline bool cmul(int x) {
for(R i=1;i*i<=x;++i) if(x%i==0&&mem[i]&&mem[x/i])
return true; return false;
}
inline void main() {
n=g(),m=g();
for(R i=1;i<=n;++i) a[i]=g(),mx=max(mx,a[i]);
for(R i=1,op,LL,RR,x;i<=m;++i)
op=g(),LL=g(),RR=g(),x=g(),q[i]=(node){op,LL,RR,x,i};
B=sqrt(n); for(R i=1;i<=m;++i) pos[i]=(i-1)/B+1;
sort(q+1,q+m+1);
for(R i=1,l=1,r=0,op,LL,RR,x,id;i<=m;++i) {
op=q[i].op,LL=q[i].l,RR=q[i].r,x=q[i].x,id=q[i].id;
while(l<LL) sub(a[l++]); while(l>LL) add(a[--l]);
while(r<RR) add(a[++r]); while(r>RR) sub(a[r--]);
if(op==1) ans[id]=csub(x);
if(op==2) ans[id]=cadd(x);
if(op==3) ans[id]=cmul(x);
} for(R i=1;i<=m;++i) puts(ans[i]?"hana":"bi");
}
} signed main() {Luitaryi::main(); return 0;}
2019.11.22
P3674 小清新人渣的本愿 莫队+bitset的更多相关文章
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- 洛谷P3674 小清新人渣的本愿(莫队)
传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...
- luogu P3674 小清新人渣的本愿(莫队+bitset)
这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...
- 【题解】Luogu P3674 小清新人渣的本愿
原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...
- 洛谷P3674 小清新人渣的本愿
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...
- luogu P3674 小清新人渣的本愿
传送门 毒瘤lxl 本质是莫队,关键是怎么处理询问 这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现 对于询问1,即\(x-y=z\),由于\(y=x-z ...
- 洛谷 P3674 小清新人渣的本愿
想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
随机推荐
- 常用Tables控件介绍(二)
初始化:1.使用现有表单创建数据表格,定义在HTML中的字段和数据 2.使用现有的table创建数据表格,定义在HTML中的字段 3.使用JS创建数据库表格 一.初始化后,根据单元格内的值,修改显示内 ...
- Django 修改该项目文件夹、项目名及项目文件夹中同名文件夹,报错 ModuleNotFoundError: No module named 'untitled'
如果你直接重构项目文件夹名及重构项目名和重构项目文件夹内同名文件夹 执行项目报错 ModuleNotFoundError: No module named 'untitled' 请执行以下操作
- xorm -Exist方法实例
判断某个记录是否存在可以使用Exist, 相比Get,Exist性能更好. package main import ( "fmt" _ "github.com/go-sq ...
- html input复选框的checked属性
input --checked: 只要复选框有checked属性,不管属性值为空或者为true or false或任意值,复选框都会被选中.切忌:checked属性值不要带引号 <input t ...
- MySQL Group Replication的安装部署
一.简介 这次给大家介绍下MySQL官方最新版本5.7.17中GA的新功能 Group Replication . Group Replication是一种可用于实现容错系统的技术.复制组是一组通过消 ...
- TJOI2019
TJOI出一堆模板题还玩一堆梗是什么鬼 甲苯先生的字符串(矩阵快速幂) 矩阵快速幂模板题 代码 甲苯先生的滚榜(树状数组.线段树) 最开始想平衡树搞,但是平衡树太难写了 一次答案的查询相当于查询比当前 ...
- go 学习笔记(3) 基础结构
package main import ( "fmt" ) const NAME string = "imooc" var a string = "慕 ...
- Windows 系统上用 .NET/C# 查找所有窗口,并获得窗口的标题、位置、尺寸、最小化、可见性等各种状态
原文:Windows 系统上用 .NET/C# 查找所有窗口,并获得窗口的标题.位置.尺寸.最小化.可见性等各种状态 在 Windows 应用开发中,如果需要操作其他的窗口,那么可以使用 EnumWi ...
- gitlab用户登录与AD域用户集成
---恢复内容开始--- 编辑gitlab.rb文件 sudo vi /etc/gitlab/gitlab.rb 下图是我编辑的内容示例(仅供参考): 编辑以下内容: gitlab_rails['ld ...
- Python_爬虫小实例
爬虫小实例 一.问题描述与分析 Q:查询某一只股票,在百度搜索页面的结果的个数以及搜索结果的变化. 分析: 搜索结果个数如下图: 搜索结果的变化:通过观察可以看到,每个一段时间搜索结果的个数是有所变化 ...