Tensorflow 细节P-40
1、绝大部分时候都会忽略graph的使用,如下代码所示,学会怎样tf.get_default_graph()是重要的,此外注意变量定义时的初始化必须加 initializer
2、此外,要知道
writer2 = tf.summary.FileWriter(Summary_log, g2)
writer2.close()
这两条语句加在哪里也是极为重要的
3、注意命名及命名空间的使用
import tensorflow as tf
Summary_log = './path'
g1 = tf.Graph()
with g1.as_default():
with tf.name_scope("MAT_MUL"):
a = tf.constant(1.0, tf.float32, [1, 2], name="tensor_a")
b = tf.constant(2.0, tf.float32, [2, 1], name="tensor_b")
result = tf.matmul(a, b, name="mat_mul")
g2 = tf.Graph()
with g2.as_default():
a = tf.get_variable("v_1", [2, 2], tf.float32, initializer=tf.ones_initializer)
b = tf.get_variable("v_2", [2, 2], tf.float32, initializer=tf.ones_initializer)
with tf.variable_scope("ADD"):
result2 = tf.add_n([a, b], name="add")
# writer1 = tf.summary.FileWriter(Summary_log, g1)
# writer1.close()
writer2 = tf.summary.FileWriter(Summary_log, g2)
writer2.close()
# with tf.Session(graph=g1) as sess:
# print(sess.run(result))
with tf.Session(graph=g2) as sess:
tf.global_variables_initializer().run()
print(sess.run(result2))
Tensorflow 细节P-40的更多相关文章
- Tensorflow细节-P174-真正的图像预处理
注意这里的读取image_raw_data = tf.gfile.FastGFile("./datasets/cat.jpg", "rb").read(),写入 ...
- Tensorflow细节-P312-PROJECTOR
首先进行数据预处理,需要生成.tsv..jpg文件 import matplotlib.pyplot as plt import numpy as np import os from tensorfl ...
- Tensorflow细节-P319-使用GPU基本的操作
如果什么都不加,直接运行装了GPU的Tensorflow,结果是这样子的 import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0], shape= ...
- Tensorflow细节-P309-高维向量可视化
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import os from tensorflow ...
- Tensorflow细节-P309-监控指标可视化
注意下面一个点就ok了 with tf.name_scope('input_reshape'): # 注意看这里,图片的生成 image_shaped_input = tf.reshape(x, [- ...
- Tensorflow细节-P290-命名空间与tensorboard上的节点
讲解几个重点知识 1.对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量 2.options=ru ...
- Tensorflow细节-Tensorboard可视化-简介
先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summ ...
- Tensorflow细节-P202-数据集的高层操作
本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. tr ...
- Tensorflow细节-P199-数据集
数据集的基本使用方法 import tempfile import tensorflow as tf input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组 da ...
- Tensorflow细节-P196-输入数据处理框架
要点 1.filename_queue = tf.train.string_input_producer(files, shuffle=False)表示创建一个队列来维护列表 2.min_after_ ...
随机推荐
- 16 IO流(十三)——Object流 序列化与反序列化
Object流.序列化与反序列化 Object流是将 可序列化的对象 进行序列化与反序列化的流. 可序列化的对象:使用关键字Serializable修饰,表示这个对象可以进行序列化与反序列化. 序列化 ...
- Pair(二进制处理+数位dp)(2019牛客暑期多校训练营(第七场))
示例: 输入: 33 4 24 5 27 8 5 输出:5 7 31 题意:存在多少对<x,y>满足x&y>C或x^y<C的条件.(0<x<=A,0< ...
- SpringBoot项目jar启动端口设置
SpringBoot项目打包后,在target下生成的jar文件可以使用 Java - jar 直接启动,指定端口号配置 java -jar epjs-eureka.jar --server.port ...
- Hadoop1-认识Hadoop大数据处理架构
一.简介概述 1.什么是Hadoop Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构 Hadoop是基于java语言开发,具有很好的跨平 ...
- docker 入坑3
查看镜像 docker images [OPTIONS] [REPOSITORY[:TAG]] -a, --all=false -f, --filter=[] --no-trunc=false -q, ...
- Net core 2.x 升级 3.0 使用自带 System.Text.Json 时区 踩坑经历
.Net Core 3.0 更新的东西很多,这里就不多做解释了,官方和博园大佬写得很详细 关于 Net Core 时区问题,在 2.1 版本的时候,因为用的是 Newtonsoft.Json,配置比较 ...
- 传统IDC 部署网站
选择IDC机房 1.选择云主机. 2.传统IDC a购买服务器 b服务器托管 c装系统 装系统 虚拟机软件 vmware workstation virtualbox hyper-v 下载:r.ami ...
- docker-compose设置mysql初始化数据库的字符集
version: '3' services: mysql: image: mysql:5.7.24# volumes:# - ./mysqld.cnf:/etc/mysql/mysql.conf.d/ ...
- java8 lamb表达式对List排序
场景一:List<Long> 或其他泛型,非对象 List<Long> ids = new ArrayList(); ids.add(100000001L); ids.add( ...
- Scyther tool 入门
1.Scyther 适合分析什么样的协议 首先协议分析工具并不是可以分析所有的协议,每种协议都有其自己适合的分析方法,并不都是可以使用形式化方法来分析. 目前协议分析方法: 模态逻辑分析(BAN ...