CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意
设 $$f_i = \left\{\begin{matrix}
1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\
\prod_{j=1}^k f_{i-j}^{b_j} \ mod \ p, \ \ \ \ \ i > k
\end{matrix}\right.$$
求 $f_k$($1 \leq f_k < p$),使得 $f_m = n$.($1 \leq k\leq 100$)
分析
$f_n$ 可以表示成 ${f_k}^x$ 的形式,也就是指数的线性递推式,用矩阵快速幂求出最终 $f_n$ 中的次数就行了。
$$\begin{bmatrix} f_k\\ f_{k-1}\\ \vdots \\ f_1 \end{bmatrix} =
\begin{bmatrix} b_1 & b_2 & \cdots & b_k\\ 1 & 0 & 0 & 0\\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot
\begin{bmatrix} f_{k-1}\\ f_{k-2}\\ \vdots \\ f_0 \end{bmatrix}$$
即 $F_n = B\cdot F_{n-1} = B^{n-k}F_k$
那么就是 ${f_k}^x \equiv f_n \ (mod p) $ 形式了,其中 $x$ 是已经用矩阵快速幂算出来的。
于是就是关于形如 $x^a\equiv b\pmod{p}$ 方程的求解,直接用模板。
其中998244353的原根为3,算常识了吧。
注意算矩阵快速幂时,模并不是 $p$,由欧拉定理,模是 $p-1$.
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
struct matrix
{
int r, c;
ll mat[][];
matrix(){
memset(mat, , sizeof(mat));
}
};
const ll p = ;
int k, b[], n, m; matrix mul(matrix A, matrix B, ll p) //矩阵相乘
{
matrix ret;
ret.r = A.r; ret.c = B.c;
for(int i = ;i < A.r;i++)
for(int k = ;k < A.c;k++)
for(int j = ;j < B.c;j++)
{
ret.mat[i][j] = (ret.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % p;
}
return ret;
} matrix mpow(matrix A, int n, int p)
{
matrix ret;
ret.r = A.r; ret.c = A.c;
for(int i = ;i < ret.r;i++) ret.mat[i][i] = ;
while(n)
{
if(n & ) ret = mul(ret, A, p);
A = mul(A, A, p);
n >>= ;
}
return ret;
} ll gcd(ll a, ll b)
{
return b ? gcd(b, a%b) : a;
} ll qpow(ll a, ll b, ll p)
{
a = a % p;
ll ret = ;
while(b)
{
if(b&) ret = ret * a % p;
a = a * a %p;
b >>= ;
}
return ret % p;
} map<int,int>mp;
int bsgs(int a, int b, int p){ //a^x = b (mod P),(a,p)=1,返回x,x>=1
int m=sqrt(p)+;mp.clear();
for(register int i=,res=b;i<m;++i,res=1ll*res*a%p)mp[res]=i;
for(register int i=,tmp=qpow(a,m,p),res=tmp;i<=m+;++i,res=1ll*res*tmp%p)
if(mp.count(res))return i*m-mp[res];
return -;
} int main()
{
scanf("%d", &k);
for(int i = ;i <= k;i++) scanf("%d", &b[i]);
scanf("%d%d", &n, &m);
matrix B;
B.r = B.c = k;
for(int i = ;i < k;i++) B.mat[][i] = b[i+];
for(int i = ;i < k;i++) B.mat[i][i-] = ; B = mpow(B, n-k, p-);
int a = B.mat[][] % (p-); //注意,是模p-1 而非p int c = bsgs(qpow(, a, p), m, p);
if(c == -) printf("-1\n");
else
{
int fk = qpow(, c, p);
printf("%d\n", fk);
}
}
参考链接:https://www.cnblogs.com/bztMinamoto/p/10348641.html
CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs的更多相关文章
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU5950 Recursive sequence (矩阵快速幂)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...
- CF1106F Lunar New Year and a Recursive Sequence
题目链接:CF1106F Lunar New Year and a Recursive Sequence 大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdot ...
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
随机推荐
- 01 Struts2框架学习(了解一下,已过时)
1.框架介绍 所谓框架,就是把一些繁琐的重复性代码封装起来,使程序员在编码中把更多的精力放到业务需求的分析和理解上面. 特点:封装了很多细节,程序员在使用的时候会非常简单. 早前,有三大框架strut ...
- Java连接数据库——最基础的方式
JAVAWEB实现增删查改(图书信息管理)之Util类 Util.java ↓ package BookSystem.Other; import java.sql.*; import java.ut ...
- springboot2.1.8使用poi导出数据生成excel(.xlsx)文件
前言:在实际开发中经常需要将数据库的数据导出成excel文件,poi方式则是其中一种较为常用的导出框架.简单读取excel文件在之前的一篇有说明 本项目实现需求:user发出一个导出student信息 ...
- git使用代理加快下载
git -c http.proxy=socks5://127.0.0.1:1086 clone https://github.com/.../...
- Scratch编程:漂亮的时钟(九)
“ 上节课的内容全部掌握了吗?反复练习了没有,编程最好的学习方法就是练习.练习.再练习.一定要记得多动手.多动脑筋哦~~” 01 — 游戏介绍 这节我们将绘制一个漂亮的.会走动时钟. 02 — 设计思 ...
- Disruptor分布式id生成策略
需要的pom文件: <!-- 顺序UUID --> <dependency> <groupId>com.fasterxml.uuid</groupId> ...
- 逆波兰表达式求值 java实现代码
根据逆波兰表示法,求表达式的值. 有效的运算符包括 +, -, *, / .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 说明: 整数除法只保留整数部分. 给定逆波兰表达式总是有效的.换句话说 ...
- NIO开发Http服务器(4):Response封装和响应
最近学习了Java NIO技术,觉得不能再去写一些Hello World的学习demo了,而且也不想再像学习IO时那样编写一个控制台(或者带界面)聊天室.我们是做WEB开发的,整天围着tomcat.n ...
- 关于ES6的对象扩展运算符
对象的扩展运算符(...),用于取出参数对象中的所有可遍历属性,然后拷贝到当前对象之中 对象扩展运算符: 1. 复制对象 let obj1 = { x: 1, y: 2, z: 3 } let obj ...
- sql 注入风险
目录 sql 注入风险 什么是sql注入呢? 查看sql注入风险 如何避免 sql 注入风险 pymysql 简单规避注入风险示列 sql 注入风险 什么是sql注入呢? 参考百度 查看sql注入风险 ...