题意

设 $$f_i = \left\{\begin{matrix}
1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  i < k\\
\prod_{j=1}^k f_{i-j}^{b_j} \ mod \ p, \ \ \ \ \ i > k
\end{matrix}\right.$$

求 $f_k$($1 \leq f_k < p$),使得 $f_m = n$.($1 \leq k\leq 100$)

分析

$f_n$ 可以表示成 ${f_k}^x$ 的形式,也就是指数的线性递推式,用矩阵快速幂求出最终 $f_n$ 中的次数就行了。

$$\begin{bmatrix} f_k\\  f_{k-1}\\   \vdots \\  f_1 \end{bmatrix} =
\begin{bmatrix} b_1 & b_2 & \cdots  & b_k\\  1 & 0 & 0 & 0\\  \vdots  & \ddots & \vdots  & \vdots \\  0 & 0 & 1 & 0 \end{bmatrix} \cdot
\begin{bmatrix} f_{k-1}\\  f_{k-2}\\   \vdots \\  f_0 \end{bmatrix}$$

即 $F_n = B\cdot F_{n-1} = B^{n-k}F_k$

那么就是 ${f_k}^x \equiv f_n \ (mod p) $ 形式了,其中 $x$ 是已经用矩阵快速幂算出来的。

于是就是关于形如 $x^a\equiv b\pmod{p}$ 方程的求解,直接用模板。

其中998244353的原根为3,算常识了吧。

注意算矩阵快速幂时,模并不是 $p$,由欧拉定理,模是 $p-1$.

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
struct matrix
{
int r, c;
ll mat[][];
matrix(){
memset(mat, , sizeof(mat));
}
};
const ll p = ;
int k, b[], n, m; matrix mul(matrix A, matrix B, ll p) //矩阵相乘
{
matrix ret;
ret.r = A.r; ret.c = B.c;
for(int i = ;i < A.r;i++)
for(int k = ;k < A.c;k++)
for(int j = ;j < B.c;j++)
{
ret.mat[i][j] = (ret.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % p;
}
return ret;
} matrix mpow(matrix A, int n, int p)
{
matrix ret;
ret.r = A.r; ret.c = A.c;
for(int i = ;i < ret.r;i++) ret.mat[i][i] = ;
while(n)
{
if(n & ) ret = mul(ret, A, p);
A = mul(A, A, p);
n >>= ;
}
return ret;
} ll gcd(ll a, ll b)
{
return b ? gcd(b, a%b) : a;
} ll qpow(ll a, ll b, ll p)
{
a = a % p;
ll ret = ;
while(b)
{
if(b&) ret = ret * a % p;
a = a * a %p;
b >>= ;
}
return ret % p;
} map<int,int>mp;
int bsgs(int a, int b, int p){ //a^x = b (mod P),(a,p)=1,返回x,x>=1
int m=sqrt(p)+;mp.clear();
for(register int i=,res=b;i<m;++i,res=1ll*res*a%p)mp[res]=i;
for(register int i=,tmp=qpow(a,m,p),res=tmp;i<=m+;++i,res=1ll*res*tmp%p)
if(mp.count(res))return i*m-mp[res];
return -;
} int main()
{
scanf("%d", &k);
for(int i = ;i <= k;i++) scanf("%d", &b[i]);
scanf("%d%d", &n, &m);
matrix B;
B.r = B.c = k;
for(int i = ;i < k;i++) B.mat[][i] = b[i+];
for(int i = ;i < k;i++) B.mat[i][i-] = ; B = mpow(B, n-k, p-);
int a = B.mat[][] % (p-); //注意,是模p-1 而非p int c = bsgs(qpow(, a, p), m, p);
if(c == -) printf("-1\n");
else
{
int fk = qpow(, c, p);
printf("%d\n", fk);
}
}

参考链接:https://www.cnblogs.com/bztMinamoto/p/10348641.html

CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs的更多相关文章

  1. HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)

    题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...

  2. HDU5950 Recursive sequence —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others)   ...

  3. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  4. hdu 5950 Recursive sequence 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  5. HDU5950 Recursive sequence (矩阵快速幂)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  6. 5950 Recursive sequence (矩阵快速幂)

    题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...

  7. CF1106F Lunar New Year and a Recursive Sequence

    题目链接:CF1106F Lunar New Year and a Recursive Sequence 大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdot ...

  8. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  9. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

随机推荐

  1. 基于Hexo搭建自己的博客主页

    搭建自己博客分为两类,一种是托管到github上的,以hexo为代表,另一种是需要自己购买服务器,主要使用wordpress框架.有不花钱的效果也很不错,就没必要自己再购买服务器了,下边主要介绍下使用 ...

  2. CI 框架 伪静态设置 去掉index.php

    .htaccess文件修改 DirectoryIndex index.php RewriteEngine on RewriteBase / RewriteCond %{REQUEST_FILENAME ...

  3. Django框架之DRF 基于mixins来封装的视图

    基础视图 示例环境搭建:新建一个Django项目,连接Mysql数据库,配置路由.视图函数.序列化单独创建py文件 # 配置路由 from django.conf.urls import url fr ...

  4. Django框架深入了解_02(DRF之序列化、反序列化)

    序列化:将Python对象准换成json格式的字符串,反之即为反序列化 DRF的序列化使用过程: 使用drf的序列化组件 -1 新建一个序列化类继承Serializer -2 在类中写要序列化的字段 ...

  5. python实战项目 — selenium登陆豆瓣

    利用selenium 模仿浏览器,登陆豆瓣 重点: 1. 要设置好 chromedriver配置与使用, chromedriver.exe 和 Chrome的浏览器版本要对应, http://chro ...

  6. Navicat12下载、激活工具、激活教程

    Navicat12的下载地址如下:链接: https://pan.baidu.com/s/11CHIWO74M4-P6UG0aWsF7Q 提取码: bayk 打开激活工具Navicat_Keygen_ ...

  7. ES6之reduce和reduceRight方法应用实例

    for循环是最基本的遍历循环,但是有些时候并不是很实用,且效率和性能较低,故本文列举出工作学习中碰到的reduce方法应用实例,供自己揣摩熟练应用,以提高自己的研发水平和研发效率. reduce方法( ...

  8. Java内存模型——方法区

    方法区(Method Area) ①      对每个加载的类型,JVM必须在方法区中存储以下类信息: 1)        这个类型的完整有效名(类型信息) 类型名称在Java类文件和JVM中都以完整 ...

  9. Web.sitemap网站导航

    全文注释: Web.sitemap导航XML文件,站点地图,功能实现菜单 1.xml的版本1.0 和编码utf-8 2.Url链接 Title显示的标题 Description描述(ToolTip) ...

  10. This project references NuGet package(s) that are missing on this computer. Enable NuGet Package Restore to download them. For more information, see http://go.microsoft.com/fwlink/?LinkID=317567.

    记事本打开csproj文件 搜索nuget 删除Target节点 类似如下: <Target Name="EnsureBclBuildImported" BeforeTarg ...