PostgreSQL 11 Partitioning Improvements
转自:https://pgdash.io/blog/partition-postgres-11.html
PostgreSQL 11, due to be released later this year, comes with a bunch of improvements for the declarative partitioning feature that was introduced in version 10. Here’s a quick look at what’s on the menu.
Partitioned Tables in Postgres
Postgres 10 introduced natively partitioned tables in core PostgreSQL. With this feature, you can shard a table into multiple child tables. The parent table itself contains no rows, but serves as a “virtual” table into which you can insert rows and query from. Combining this with other PostgreSQL features, you can have child tables on separate disks (tablespaces) or even other servers (FDW).
Checkout the Postgres docs for more on partitioned tables.
PostgreSQL 11 brings all around improvements to partitioning functionality. You can get your hands dirty with the new features on the first beta which should be coming out in a few weeks. Or compile it from the latest snapshot, like we did.
So without further ado, here is the list you came here for:
1. Update Moves Rows Across Partitions
PostgreSQL 10 did not let you perform updates to rows that would result in the row ending up in a different partition. For example, if you had a table with 2 partitions, and 1 row in the first one:
CREATE TABLE measurement (
logdate date not null,
peaktemp int,
unitsales int
) PARTITION BY RANGE (logdate);
CREATE TABLE measurement_y2016 PARTITION OF measurement
FOR VALUES FROM ('2016-01-01') TO ('2017-01-01');
CREATE TABLE measurement_y2017 PARTITION OF measurement
FOR VALUES FROM ('2017-01-01') TO ('2018-01-01');
INSERT INTO measurement (logdate, peaktemp, unitsales)
VALUES ('2016-07-10', 66, 100); -- goes into measurement_y2016 table
..and you tried to update the row such that as per the partition range it should end up in the other child table (measurement_y2017), this is what happens:
pg10=> UPDATE measurement SET logdate='2017-07-10';
ERROR: new row for relation "measurement_y2016" violates partition constraint
DETAIL: Failing row contains (2017-07-10, 66, 100).
But the same statement in Postgres 11 will move the row to the correct partition:
pg11=# UPDATE measurement SET logdate='2017-07-10';
UPDATE 1
pg11=# select * from measurement_y2016;
logdate | peaktemp | unitsales
---------+----------+-----------
(0 rows)
pg11=# select * from measurement_y2017;
logdate | peaktemp | unitsales
------------+----------+-----------
2017-07-10 | 66 | 100
(1 row)
2. Create Default Partitions
With v11 it is now possible to create a “default” partition, which can store rows that do not fall into any existing partition’s range or list.
In v10, trying to insert such a row fails:
pg10=> INSERT INTO measurement (logdate, peaktemp, unitsales)
VALUES ('2018-07-10', 66, 100);
ERROR: no partition of relation "measurement" found for row
DETAIL: Partition key of the failing row contains (logdate) = (2018-07-10).
But in v11 we can first create a default partition:
pg11=# CREATE TABLE measurement_default PARTITION OF measurement DEFAULT;
CREATE TABLE
Note the new syntax that says “DEFAULT” instead of “FOR VALUES …”. With the default partition in place, we can insert rows that do not fall in any existing partition’s range/list:
pg11=# INSERT INTO measurement (logdate, peaktemp, unitsales)
VALUES ('2018-07-10', 66, 100);
INSERT 0 1
pg11=# SELECT * FROM measurement_default;
logdate | peaktemp | unitsales
------------+----------+-----------
2018-07-10 | 66 | 100
(1 row)
The unclaimed row ends up in the table marked as the default partition.
A word of warning though: after adding a default partition, it becomes impossible to directly add another partition to cover a new range. You’ll need to detach the default partition, create the new partition, “manually” move the matching rows from the default partition to the new partition and then reattach the default partition.
3. Automatic Index Creation
Indexes had to be created manually for each partition in v10. Trying to create a partition on the parent table fails:
pg10=> CREATE INDEX ixsales ON measurement(unitsales);
ERROR: cannot create index on partitioned table "measurement"
In v11, if you create an index on the parent table, Postgres will automatically create indexes on all the child tables:
pg11=# CREATE INDEX ixsales ON measurement(unitsales);
CREATE INDEX
pg11=# \d measurement_y2016
Table "public.measurement_y2016"
Column | Type | Collation | Nullable | Default
-----------+---------+-----------+----------+---------
logdate | date | | not null |
peaktemp | integer | | |
unitsales | integer | | |
Partition of: measurement FOR VALUES FROM ('2016-01-01') TO ('2017-01-01')
Indexes:
"measurement_y2016_unitsales_idx" btree (unitsales)
Any new partitions created after the index was created, will also automagically get an index added to it.
4. Foreign Key Support
It was not possible to have a column in a partitioned table be a foreign key. This is what you got in v10:
pg10=> CREATE TABLE invoices ( invoice_id integer PRIMARY KEY );
CREATE TABLE
pg10=>
pg10=> CREATE TABLE sale_amounts_1 (
pg10(> saledate date NOT NULL,
pg10(> invoiceid integer REFERENCES invoices(invoice_id)
pg10(> ) PARTITION BY RANGE (saledate);
ERROR: foreign key constraints are not supported on partitioned tables
LINE 3: invoiceid integer REFERENCES invoices(invoice_id)
^
But in v11, foreign keys are allowed:
pg11=# CREATE TABLE invoices ( invoice_id integer PRIMARY KEY );
CREATE TABLE
pg11=#
pg11=# CREATE TABLE sale_amounts_1 (
pg11(# saledate date NOT NULL,
pg11(# invoiceid integer REFERENCES invoices(invoice_id)
pg11(# ) PARTITION BY RANGE (saledate);
CREATE TABLE
5. Unique Indexes
In Postgres 10, you had to enforce unique constraints at child tables. It was not possible to create a unique index on the master:
pg10=> CREATE TABLE sale_amounts_2 (
pg10(> saledate date NOT NULL,
pg10(> invoiceid INTEGER,
pg10(> UNIQUE (saledate, invoiceid)
pg10(> ) PARTITION BY RANGE (saledate);
ERROR: unique constraints are not supported on partitioned tables
LINE 4: UNIQUE (saledate, invoiceid)
^
With Postgres 11, you can create a unique index on the master:
pg11=# CREATE TABLE sale_amounts_2 (
pg11(# saledate date NOT NULL,
pg11(# invoiceid INTEGER,
pg11(# UNIQUE (saledate, invoiceid)
pg11(# ) PARTITION BY RANGE (saledate);
CREATE TABLE
..and Postgres will take care of creating indexes on all existing and future child tables:
pg11=# CREATE TABLE sale_amounts_2_y2016 PARTITION OF sale_amounts_2
pg11-# FOR VALUES FROM ('2016-01-01') TO ('2017-01-01');
CREATE TABLE
pg11=# \d sale_amounts_2_y2016
Table "public.sale_amounts_2_y2016"
Column | Type | Collation | Nullable | Default
-----------+---------+-----------+----------+---------
saledate | date | | not null |
invoiceid | integer | | |
Partition of: sale_amounts_2 FOR VALUES FROM ('2016-01-01') TO ('2017-01-01')
Indexes:
"sale_amounts_2_y2016_saledate_invoiceid_key" UNIQUE CONSTRAINT, btree (saledate, invoiceid)
The columns in the index definition should be a superset of the partition key columns. This means that the uniqueness is enforced locally to each partition, and you can’t use this to enforce uniqueness of alternate-primary-key columns.
6. Partition-level Aggregation
PostgreSQL 11 comes with a new option, called enable_partitionwise_aggregate, which you can turn on to make the query planner to push aggregation down to the partition level. By default, this option is off, and you get plans as before:
pg11=# EXPLAIN SELECT logdate, count(*) FROM measurement GROUP BY logdate;
QUERY PLAN
---------------------------------------------------------------------------------
HashAggregate (cost=27.98..38.96 rows=1098 width=12)
Group Key: measurement_y2016.logdate
-> Append (cost=0.00..22.49 rows=1099 width=4)
-> Seq Scan on measurement_y2016 (cost=0.00..5.66 rows=366 width=4)
-> Seq Scan on measurement_y2017 (cost=0.00..5.66 rows=366 width=4)
-> Seq Scan on measurement_default (cost=0.00..5.67 rows=367 width=4)
(6 rows)
This says the grouping happens over a superset of all the individual, per-partition scans. Let’s turn on the new option and see the updated plan:
pg11=# SET enable_partitionwise_aggregate=on;
SET
pg11=# EXPLAIN SELECT logdate, count(*) FROM measurement GROUP BY logdate;
QUERY PLAN
---------------------------------------------------------------------------------
Append (cost=7.49..38.96 rows=1098 width=12)
-> HashAggregate (cost=7.49..11.15 rows=366 width=12)
Group Key: measurement_y2016.logdate
-> Seq Scan on measurement_y2016 (cost=0.00..5.66 rows=366 width=4)
-> HashAggregate (cost=7.49..11.14 rows=365 width=12)
Group Key: measurement_y2017.logdate
-> Seq Scan on measurement_y2017 (cost=0.00..5.66 rows=366 width=4)
-> HashAggregate (cost=7.51..11.18 rows=367 width=12)
Group Key: measurement_default.logdate
-> Seq Scan on measurement_default (cost=0.00..5.67 rows=367 width=4)
(10 rows)
Now the grouping happens once per partition, and the results are just concatenated (we’re grouping by the partition key here).
Pushing down the aggregation should result in faster queries because of better parallelism and improved lock handling.
7. Partition by Hash
Postgres 10 came with RANGE and LIST type partitions. In 11, we have HASH type partitions also. Hash type partitions distribute the rows based on the hash value of the partition key. The reminder of the hash value when divided by a specified integer is used to calculate which partition the row goes into (or can be found in).
Here is how to create a hash partition, in this case over a partition key of type text:
pg11=# CREATE TABLE hp ( foo text ) PARTITION BY HASH (foo);
CREATE TABLE
pg11=# CREATE TABLE hp_0 PARTITION OF hp FOR VALUES WITH (MODULUS 3, REMAINDER 0);
CREATE TABLE
pg11=# CREATE TABLE hp_1 PARTITION OF hp FOR VALUES WITH (MODULUS 3, REMAINDER 1);
CREATE TABLE
pg11=# CREATE TABLE hp_2 PARTITION OF hp FOR VALUES WITH (MODULUS 3, REMAINDER 2);
CREATE TABLE
We expect each partition to contain about a third of all the rows – let’s try it out:
pg11=# INSERT INTO hp SELECT md5(v::text) FROM generate_series(0,10000) v;
INSERT 0 10001
pg11=# SELECT count(*) FROM hp_0;
count
-------
3402
(1 row)
pg11=# SELECT count(*) FROM hp_1;
count
-------
3335
(1 row)
pg11=# SELECT count(*) FROM hp_2;
count
-------
3264
(1 row)
You can read more about hash partition here.
8. Faster Queries
Apart from these features, several improvments to the query planner and executor and partition pruning algorithms make for faster queries on partitoned tables in PostgreSQL 11. It is too early in the v11 release cycle to benchmark any results though.
About pgDash
pgDash is an in-depth monitoring solution designed specifically for PostgreSQL deployments. pgDash shows you information and metrics about every aspect of your PostgreSQL database server, collected using the open-source tool pgmetrics.

pgDash provides core reporting and visualization functionality, including collecting and displaying PostgreSQL information and providing time-series graphs and detailed reports. We’re actively working to enhance and expand pgDash to include alerting, baselines, teams, and more.
PostgreSQL 11 Partitioning Improvements的更多相关文章
- rehat7.X下postgresql 11编译安装
文档目录结构: 一.准备 操作系统版本:rehat7.6 Postgresql:11.2 软件安装目录:/pgsql11/basedir 数据文件存放目录:/pgsql11data/ 11.2的下载地 ...
- Windows 2008R2 安装PostgreSQL 11.6
前些天在CentOS 7.5 下安装了PostgreSQL 11.6.除了在无外网环境下需要另外配置之外,其他没有什么差别.今天主要写一下在Windows下面安装PostgreSQL的问题. 在官网看 ...
- Win10下载安装PostgreSQL 11.1
下载地址:https://get.enterprisedb.com/postgresql/postgresql-11.1-1-windows-x64.exe Installation Director ...
- CentOS7(64) yum安装、配置PostgreSQL 11
一.安装postgresql11 1.Install the repository RPM: 添加RPM yum install https://download.postgresql.org/pub ...
- PostgreSQL Table Partitioning<转>
原创文章,转载请务必将下面这段话置于文章开头处(保留超链接).本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/12/13/SQL3_partiti ...
- 阿里云服务器 centos 7 安装postgresql 11
Postgresql简介 官方网站:https://www.postgresql.org/ 简介参考zhihu文章 https://www.zhihu.com/question/20010554 关于 ...
- 基于Arcgis Engine 10.2(C#)+PostgreSQL 11(Postgis 3)+pgRouting 3.0实现使用数据库进行路径规划
前言:最近在(被迫)使用ArcGIS Engine10.2(.NET平台)进行二次开发(桌面应用),因为想做一个最短路径查询的功能,而arcgis的网络分析又比较麻烦,于是想到了使用Postgis.但 ...
- Windows 2008R2 定时备份PostgreSQL 11.6及还原操作
PostgreSQL 自动备份,并删除10天前的备份文件. 第一步,创建脚本,命名back.bat文件,可直接点击执行或者CMD执行此批处理命令. @ECHO OFF @setlocal enable ...
- PostgreSQL 11 新特性之覆盖索引(Covering Index)(转载)
通常来说,索引可以用于提高查询的速度.通过索引,可以快速访问表中的指定数据,避免了表上的扫描.有时候,索引不仅仅能够用于定位表中的数据.某些查询可能只需要访问索引的数据,就能够获取所需要的结果,而不需 ...
随机推荐
- (十三)golang--程序流程控制
1.顺序控制 若没有判断,没有跳转,程序由上至下依次执行 2.分支控制 单分支if 条件表达式 { 执行代码块} 双分支if 条件表达式 { 执行代码块1} else { 执行代码块2} 多分支if ...
- PHP curl cookie不识别
PHP curl cookie不识别 所以curl的时候别用setcookie 用了也没用
- 用Java编程能给物联网(IoT)带来什么优势与不同?
用Java编程能给物联网(IoT)带来什么优势与不同? 这是一个不太容易回答的问题,也是一个适合拿出来与大家讨论的一个话题~首先需要聊聊物联网硬件与嵌入式设备有什么不同.嵌入式设备通常是一个软件一体的 ...
- ant-design自定义FormItem--上传文件组件
自定义上传组件,只需要在内部的值变化之后调用props中的onChange方法就可以托管在From组件中, 此外为了保证,初始化值发生变化后组件也发生变化,需要检测initialValue 变化,这是 ...
- HTML--元素居中各种处理方法2
紧接上一篇. 如果要居中的是一个块元素呢. 1)如果你知道这个块元素的高度: <main> <div> I'm a block-level element with a fix ...
- golang学习笔记 --flag
概述 flag包提供了一系列解析命令行参数的功能接口 命令行语法 命令行语法主要有以下几种形式 -flag //只支持bool类型 -flag=x -flag x //只支持非bool类型 以上语法对 ...
- IIS8.5中的强制https直接修改web.config文件和顶级域名跳转www和过滤子目录不强制跳转
亲测可用 <?xml version="1.0" encoding="UTF-8"?> <configuration> <syst ...
- PYTHON的ASCII码转换
首先,我们要知道ASCII的ord 这个变值,附上代码: c=input("请输入一个字符:") print (c+"的ASCII码为 ".ord(c)) #用 ...
- Centos7 日志查看工具
1 概述 日志管理工具journalctl是centos7上专有的日志管理工具,该工具是从message这个文件里读取信息.Systemd统一管理所有Unit的启动日志.带来的好处就是,可以 ...
- Python基础15
P75. 闭包,需再理解. 装饰器,语法糖