在mini-batch梯度下降法中,我们曾经说过因为分割了baby batch,所以迭代是有波动而且不能够精确收敛于最小值的

因此如果我们将学习率α逐渐变小,就可以使得在学习率α较大的时候加快模型训练速度,在α变小的时候使得模型迭代的波动逐渐减弱,最终收敛于一个较小的区域来得到较为精确的结果

首先是公式1学习率衰减的标准公式:

其中decay rate即衰减率,epoch-num指的是遍历整个训练集的次数,α0是给定的初始学习率

其次是公式2指数衰减公式:

其中,0.95是一个小于1的初始值,可以指定

接下来公式3,k是一个常数:

公式4,t是mini-batch的大小:

公式5:

离散下降法,每经过一定的迭代次数,指定更低的α即可

公式6

手动下降法,适用于在小数据集上分步骤实验,可以随时指定α

ubuntu之路——day8.5 学习率衰减learning rate decay的更多相关文章

  1. 权重衰减(weight decay)与学习率衰减(learning rate decay)

    本文链接:https://blog.csdn.net/program_developer/article/details/80867468“微信公众号” 1. 权重衰减(weight decay)L2 ...

  2. 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)

    1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当 ...

  3. pytorch learning rate decay

    关于learning rate decay的问题,pytorch 0.2以上的版本已经提供了torch.optim.lr_scheduler的一些函数来解决这个问题. 我在迭代的时候使用的是下面的方法 ...

  4. ubuntu之路——day8.4 Adam自适应矩估计算法

    基本上讲,Adam就是将day8.2提到的momentum动量梯度下降法和day8.3提到的RMSprop算法相结合的优化算法 首先初始化 SdW = 0 Sdb = 0 VdW = 0 Vdb = ...

  5. mxnet设置动态学习率(learning rate)

    https://blog.csdn.net/xiaotao_1/article/details/78874336 如果learning rate很大,算法会在局部最优点附近来回跳动,不会收敛: 如果l ...

  6. ubuntu之路——day11.7 end-to-end deep learning

    在传统的数据处理系统或学习系统中,有一些工作需要多个步骤进行,但是端到端的学习就是用一个神经网络来代替中间所有的过程. 举个例子,在语音识别中: X(Audio)----------MFCC----- ...

  7. ubuntu之路——day8.1 深度学习优化算法之mini-batch梯度下降法

    所谓Mini-batch梯度下降法就是划分训练集和测试集为等分的数个子集,比如原来有500W个样本,将其划分为5000个baby batch,每个子集中有1000个样本,然后每次对一个mini-bat ...

  8. ubuntu之路——day8.3 RMSprop

    RMSprop: 全称为root mean square prop,提及这个算法就不得不提及上篇博文中的momentum算法 首先来看看momentum动量梯度下降法的过程: 在RMSprop中: C ...

  9. ubuntu之路——day8.2 深度学习优化算法之指数加权平均与偏差修正,以及基于指数加权移动平均法的动量梯度下降法

    首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt- ...

随机推荐

  1. css设置全局变量和局部变量

    在我们使用less或者sass时常常会使用到局部变量和全局变量,其实在我们使用css做开发时也可以定义全局变量和局部 变量来简化我们的开发效率,很简单也很实用:1.设置全局变量只需要在我们的根引用的c ...

  2. day26-python之封装

    1.动态导入模块 # module_t=__import__('m1.t') # print(module_t) # module_t = __import__('m1.t') # print(mod ...

  3. SpringBoot+SpringCloud+vue+Element开发项目——集成MyBatis框架

    添加mybatis-spring-boot-starter依赖 pox.xml <!--mybatis--> <dependency> <groupId>org.m ...

  4. Android笔记(五十七)Android总结:基础篇

    什么是安卓 Android是一种基于Linux的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发.目前发行版本是6.0 安卓平台的优势 ...

  5. Windows性能计数器监控实践

    Windows性能计数器(Performance Counter)是Windows提供的一种系统功能,它能实时采集.分析系统内的应用程序.服务.驱动程序等的性能数据,以此来分析系统的瓶颈.监控组件的表 ...

  6. websocket实现心跳连接

    在使用websocket的时候,遇到了一个websocket在连接一段时间就异常断开连接了.第一想法就是重新去连接websocket(websock.onopen),后来发现这种方式是错误的,查阅文档 ...

  7. 安装k8s,使用root帐号的初始化脚本

    现在稳定性差不多了.可以总结一下了. 真正使用时,有几个地方,还是确认一下,再正式运行吧. #!/bin/bash # Version V0. ---: ;fi K8S_VERSION="1 ...

  8. 开启idea自动Build功能

    修改Intellij IDEA的配置两步:1.setting -> Compile -> Build project automatically --> 选中 2.CTRL + SH ...

  9. node gyp编译所需要的环境

    安装ms的build工具包,自带python npm install --global --production windows-build-tools

  10. pandas数据类型(二)与numpy的str和object类型之间的区别

    现象: Numpy区分了str和object类型,其中dtype(‘S’)和dtype(‘O’)分别对应于str和object. 然而,pandas缺乏这种区别 str和object类型都对应dtyp ...