这里以二元分类为例子,给出最基本原理的解释

GBDT 是多棵树的输出预测值的累加

GBDT的树都是 回归树 而不是分类树

  1. 分类树

分裂的时候选取使得误差下降最多的分裂

计算的技巧

最终分裂收益按照下面的方式计算,注意圆圈内的部分是固定值

  1. GBDT 二分类

GBDT在实现中可以完全复用上面的计算方法框架,只是我们的优化的目标函数不同。

这里使用的是 指数误差函数,不管是预测正确还是错误 误差值都存在,但是正确的预测 会使得误差值小于错误的预测 参考

AdaBoost and the Super Bowl of Classifiers

A Tutorial Introduction to Adaptive Boosting

关于常用误差函数 参考 http://www.cnblogs.com/rocketfan/p/4083821.html

参考 Greedy Functon Approximation:A Gradient Boosting Machine

4.4节关于二分类情况误差函数的设计

这里其实和上面给出的一样,只是增加了 log(1 +, 另外多了一个2,2yF), 参考前面的LossFunction http://www.cnblogs.com/rocketfan/p/4083821.html

的推导,其实这个应该算作LogLoss或者说是logistic regression, cross entropy error,也就是从probablity出发的logloss推导到output F(x)的表示就是上面的

式子,而它看上去刚好就是一个指数误差函数。

严格意义上说是LogLoss不是指数误差 不过LogLoss和指数误差看上去比较相似。

页解释,线性加权的值(output)用来预测 p(true)和p(false)的比例的log值(回归值是实数范围取值不适合预测0-1,做了一个转换),越是接近true,那么F(x)越接近+无穷(对应最大可能性判断true), p(false)越大 那么越接近-无穷(对应最大可能性判断false)

F(X) 对应 feature X 当前的回归预测值也就是多棵树经过决策到达叶子节点的输出值output(x)的累加值。N个样本则F(x)N个维度,当开始没有分裂的时候所有样本在一个节点则所有F(x)对应一个相同的值,分裂一次后两个叶子节点则F(X)对应可能到不同的叶子节点从而可能有两个不同的值。

对误差函数计算关于F的梯度,误差函数是

变量是F(x)

考虑learning_rate之后是 (@TODO)

F(X) 对应 叶子节点中一个样本对应它的feature X 当前的预测值

参考 机器学习概率角度 一书的16章

我们的分裂目标从上面回归树基本算法中的希望逼近y 变成了 逼近梯度值 r_im,

也就是说当前树是预测负梯度值的。

F_m(x) = F_m-1(x) + learning_rate*(当前树的预测值(也就是预测负梯度..)) //@TODO check

再对比下ng课件最简单的梯度下降 针对regression的例子

我们采用的每颗树更新策略是针对F(x)的,而F(x)沿着梯度的方向的累加,目标是使得我们的

误差函数达到最小。

GBDT的基本原理的更多相关文章

  1. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  2. 后端程序员之路 10、gbdt(Gradient Boosting Decision Tree)

    1.GbdtModelGNode,含fea_idx.val.left.right.missing(指向left或right之一,本身不分配空间)load,从model文件加载模型,xgboost输出的 ...

  3. gbdt在回归方面的基本原理以及实例并且可以做分类

    对书法的热爱,和编译器打数学公式很艰难,就这样的正例自己学过的东西,明天更新gbdt在分类方面的应用. 结论,如果要用一个常量来预测y,用log(sum(y)/sum(1-y))是一个最佳的选择. 本 ...

  4. RF,GBDT,XGBoost,lightGBM的对比

    转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensem ...

  5. GBDT学习笔记

    GBDT(Gradient Boosting Decision Tree,Friedman,1999)算法自提出以来,在各个领域广泛使用.从名字里可以看到,该算法主要涉及了三类知识,Gradient梯 ...

  6. 机器学习 | 详解GBDT梯度提升树原理,看完再也不怕面试了

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第30篇文章,我们今天来聊一个机器学习时代可以说是最厉害的模型--GBDT. 虽然文无第一武无第二,在机器学习领域并没有 ...

  7. Ognl表达式基本原理和使用方法

    Ognl表达式基本原理和使用方法 1.Ognl表达式语言 1.1.概述 OGNL表达式 OGNL是Object Graphic Navigation Language(对象图导航语言)的缩写,他是一个 ...

  8. Android自定义控件之基本原理

    前言: 在日常的Android开发中会经常和控件打交道,有时Android提供的控件未必能满足业务的需求,这个时候就需要我们实现自定义一些控件,今天先大致了解一下自定义控件的要求和实现的基本原理. 自 ...

  9. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

随机推荐

  1. Linux2 在Linux(CentOS)上配置SSH免登陆

    前言:      本文主要是我在安装hadoop之前,需要先配置SSH免登陆.通过网上搜索,发现不少类似的资料,但多少都有些小问题,所以结合自己的实践,记录在此,作为参考.如果能帮助到其他人,自然是更 ...

  2. 【优雅代码】深入浅出 妙用Javascript中apply、call、bind

    这篇文章实在是很难下笔,因为网上相关文章不胜枚举. 巧合的是前些天看到阮老师的一篇文章的一句话: “对我来说,博客首先是一种知识管理工具,其次才是传播工具.我的技术文章,主要用来整理我还不懂的知识.我 ...

  3. HTML和CSS经典布局5

    如下图: 需求: 1. 如图 2. 可以从body标签开始. 3. 页面内容高度设置高点,把窗口的滚动条显示出来,但是busy indicator不滚动. <!DOCTYPE html> ...

  4. SSRS(rdl报表)分页显示表头和对表头的冻结处理

    基础环境 最近在公司做西门子某系统的二次开发,需要用到SQLServer Reporting Services(SSRS).我们用的SQL版本是SQLServer 2008 R2:在设计报表时,表格用 ...

  5. 我所理解的RESTful Web API [Web标准篇]

    REST不是一个标准,而是一种软件应用架构风格.基于SOAP的Web服务采用RPC架构,如果说RPC是一种面向操作的架构风格,而REST则是一种面向资源的架构风格.REST是目前业界更为推崇的构建新一 ...

  6. Linux Hadoop2.7.3 安装(单机模式) 二

    Linux Hadoop2.7.3 安装(单机模式) 一 Linux Hadoop2.7.3 安装(单机模式) 二 YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的Jo ...

  7. C#设计模式-桥接模式

    这里以电视遥控器的一个例子来引出桥接模式解决的问题,首先,我们每个牌子的电视机都有一个遥控器,此时我们能想到的一个设计是——把遥控器做为一个抽象类,抽象类中提供遥控器的所有实现,其他具体电视品牌的遥控 ...

  8. dd

    1.属性 关键:get,set public class Account { private string id; private decimal money; public string Id { ...

  9. js实现继承的方式总结

    js实现继承的5种方式 以下 均为 ES5 的写法: js是门灵活的语言,实现一种功能往往有多种做法,ECMAScript没有明确的继承机制,而是通过模仿实现的,根据js语言的本身的特性,js实现继承 ...

  10. jQuery 2.0.3 源码分析Sizzle引擎 - 高效查询

    为什么Sizzle很高效? 首先,从处理流程上理解,它总是先使用最高效的原生方法来做处理 HTML文档一共有这么四个API: getElementById 上下文只能是HTML文档 浏览器支持情况:I ...