Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.

Example 1:

Input:

    5
/ \
3 6
/ \ \
2 4 7

Target = 9

Output: True
Example 2:

Input:

    5
/ \
3 6
/ \ \
2 4 7

Target = 28

Output: False

思路:

Two Sum的变种题,这次输入的是一个二叉树,还是用HashMap,然后遍历二叉树,用之前的方法找就行了。

还有一种方法是利用BST的性质,进行查找。

Java:

This method also works for those who are not BSTs. The idea is to use a hashtable to save the values of the nodes in the BST. Each time when we insert the value of a new node into the hashtable, we check if the hashtable contains k - node.val.

Time Complexity: O(n), Space Complexity: O(n).

public boolean findTarget(TreeNode root, int k) {
HashSet<Integer> set = new HashSet<>();
return dfs(root, set, k);
} public boolean dfs(TreeNode root, HashSet<Integer> set, int k){
if(root == null)return false;
if(set.contains(k - root.val))return true;
set.add(root.val);
return dfs(root.left, set, k) || dfs(root.right, set, k);
}

Java:

The idea is to use a sorted array to save the values of the nodes in the BST by using an inorder traversal. Then, we use two pointers which begins from the start and end of the array to find if there is a sum k.

Time Complexity: O(n), Space Complexity: O(n).

    public boolean findTarget(TreeNode root, int k) {
List<Integer> nums = new ArrayList<>();
inorder(root, nums);
for(int i = 0, j = nums.size()-1; i<j;){
if(nums.get(i) + nums.get(j) == k)return true;
if(nums.get(i) + nums.get(j) < k)i++;
else j--;
}
return false;
} public void inorder(TreeNode root, List<Integer> nums){
if(root == null)return;
inorder(root.left, nums);
nums.add(root.val);
inorder(root.right, nums);
}

Java:

The idea is to use binary search method. For each node, we check if k - node.val exists in this BST.

Time Complexity: O(nh), Space Complexity: O(h). h is the height of the tree, which is logn at best case, and n at worst case.

    public boolean findTarget(TreeNode root, int k) {
return dfs(root, root, k);
} public boolean dfs(TreeNode root, TreeNode cur, int k){
if(cur == null)return false;
return search(root, cur, k - cur.val) || dfs(root, cur.left, k) || dfs(root, cur.right, k);
} public boolean search(TreeNode root, TreeNode cur, int value){
if(root == null)return false;
return (root.val == value) && (root != cur)
|| (root.val < value) && search(root.right, cur, value)
|| (root.val > value) && search(root.left, cur, value);
}

Java:

public class Solution {
public boolean findTarget(TreeNode root, int k) {
List<Integer> list = new ArrayList<>();
inorder(root, list);
int i = 0;
int j = list.size() - 1;
while (i < j) {
int sum = list.get(i) + list.get(j);
if (sum == k) {
return true;
}
else if (sum < k) {
i++;
}
else {
j--;
}
}
return false;
} public List<Integer> inorder(TreeNode root, List<Integer> list) {
Stack<TreeNode> stack = new Stack<>();
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
list.add(root.val);
root = root.right;
}
return list;
}
}

Java:

public class Solution {
public boolean findTarget(TreeNode root, int k) {
Set<Integer> candidates = new HashSet<>();
Stack<TreeNode> stack = new Stack<>();
while (!stack.empty() || root != null) {
if (root != null) {
int val = root.val;
if (candidates.contains(val)) {
return true;
} else {
candidates.add(k - val);
}
stack.add(root);
root = root.left;
} else {
TreeNode node = stack.pop();
root = node.right;
}
}
return false;
}
}  

Python: 递归遍历BST + Two Sum

class Solution(object):
def findTarget(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: bool
"""
self.dset = set()
self.traverse(root)
for n in self.dset:
if k - n != n and k - n in self.dset:
return True
return False
def traverse(self, root):
if not root: return
self.dset.add(root.val)
self.traverse(root.left)
self.traverse(root.right)

Python: wo, 160 ms, faster than 9.23% of Python online submissions

class Solution(object):
def findTarget(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: bool
"""
nums = []
self.dfs(root, nums)
lookup = [] for num in nums:
if k - num in lookup:
return True
lookup.append(num)
return False def dfs(self, root, res):
if not root:
return
res.append(root.val)
self.dfs(root.left, res)
self.dfs(root.right, res)

Python: 递归遍历BST + 利用BST性质进行检索

class Solution(object):
def findTarget(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: bool
"""
self.root = root
self.k = k
return self.findNumber(root)
def findNumber(self, root):
if not root: return False
node = self.root
n = self.k - root.val
if n != root.val:
while node:
if node.val == n: return True
if n > node.val: node = node.right
else: node = node.left
return self.findNumber(root.left) or self.findNumber(root.right)

Python:

class Solution:
def findTarget(self, root, k):
candidates = set()
stack = []
while stack or root:
if root:
val = root.val
if val in candidates:
return True
else:
candidates.add(k - val)
stack.append(root)
root = root.left
else:
node = stack.pop()
root = node.right
return False

C++:

bool findTarget(TreeNode* root, int k) {
unordered_set<int> set;
return dfs(root, set, k);
} bool dfs(TreeNode* root, unordered_set<int>& set, int k){
if(root == NULL)return false;
if(set.count(k - root->val))return true;
set.insert(root->val);
return dfs(root->left, set, k) || dfs(root->right, set, k);
}

C++:

bool findTarget(TreeNode* root, int k) {
vector<int> nums;
inorder(root, nums);
for(int i = 0, j = nums.size()-1; i<j;){
if(nums[i] + nums[j] == k)return true;
(nums[i] + nums[j] < k)? i++ : j--;
}
return false;
} void inorder(TreeNode* root, vector<int>& nums){
if(root == NULL)return;
inorder(root->left, nums);
nums.push_back(root->val);
inorder(root->right, nums);
}

C++:  

bool findTarget(TreeNode* root, int k) {
return dfs(root, root, k);
} bool dfs(TreeNode* root, TreeNode* cur, int k){
if(cur == NULL)return false;
return search(root, cur, k - cur->val) || dfs(root, cur->left, k) || dfs(root, cur->right, k);
} bool search(TreeNode* root, TreeNode *cur, int value){
if(root == NULL)return false;
return (root->val == value) && (root != cur)
|| (root->val < value) && search(root->right, cur, value)
|| (root->val > value) && search(root->left, cur, value);
}

  

  

相似题目:

[LeetCode] 1. Two Sum 两数和

[LeetCode] 167. Two Sum II - Input array is sorted 两数和 II - 输入是有序的数组

[LeetCode] 170. Two Sum III - Data structure design 两数之和之三 - 数据结构设计

[LeetCode] 653. Two Sum IV - Input is a BST 两数之和之四 - 输入是二叉搜索树的更多相关文章

  1. [LeetCode] Two Sum IV - Input is a BST 两数之和之四 - 输入是二叉搜索树

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...

  2. [LeetCode] 167. Two Sum II - Input array is sorted 两数和 II - 输入是有序的数组

    Given an array of integers that is already sorted in ascending order, find two numbers such that the ...

  3. Leetcode653.Two Sum IV - Input is a BST两数之和4-输入BST

    给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true. struct TreeNode { int val; struct TreeNode * ...

  4. LeetCode 653 Two Sum IV - Input is a BST 解题报告

    题目要求 Given a Binary Search Tree and a target number, return true if there exist two elements in the ...

  5. LeetCode - 653. Two Sum IV - Input is a BST

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...

  6. LeetCode 653. Two Sum IV – Input is a BST

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...

  7. 167 Two Sum II - Input array is sorted 两数之和 II - 输入有序数组

    给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数.函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2.请注意,返回的下标值(i ...

  8. leetcode 1.Two Sum 、167. Two Sum II - Input array is sorted 、15. 3Sum 、16. 3Sum Closest 、 18. 4Sum 、653. Two Sum IV - Input is a BST

    1.two sum 用hash来存储数值和对应的位置索引,通过target-当前值来获得需要的值,然后再hash中寻找 错误代码1: Input:[3,2,4]6Output:[0,0]Expecte ...

  9. 【Leetcode_easy】653. Two Sum IV - Input is a BST

    problem 653. Two Sum IV - Input is a BST 参考 1. Leetcode_easy_653. Two Sum IV - Input is a BST; 完

随机推荐

  1. Kotlin函数式编程范式深入剖析

    继续学习Kotlin的函数式编程,先定义一个高阶函数: 其实上面这种调用方式在Kotlin用得不多,反而是将Lambda表达式放到方法体中使用得较频繁,如下: 接下来定义一个扩展方法,用来对字符串进行 ...

  2. poj1679The Unique MST(次小生成树模板)

    次小生成树模板,别忘了判定不存在最小生成树的情况 #include <iostream> #include <cstdio> #include <cstring> ...

  3. BZOJ1499: 瑰丽华尔兹(单调队列)

    pro: 给出一个n*m的地图,刚开始人在(x,y),每次给出一段区间(l,r,t),表示在时间[l,r]内,可以使人向4个方向(t)移动一格,或者不动.求最大可以移动多少格. sol: 考虑每一列( ...

  4. JAVA 启动服务命令

    java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=7301,suspend=n -Xms2048m -Xmx4096m -XX:+ ...

  5. map_multimap

    #include<iostream> #include<string> #include<map> using namespace std; struct Self ...

  6. java项目部署到LIINUX

    天领导给个任务,把java项目部署到liunx服务器上.现记录步骤,方便以后查看.项目部署服务器步骤:服务器信息:弹性IP地址:xx.xx.xxx.xx账号:root密码:cjw@100 数据库信息: ...

  7. c#中的new和override的实例

    using System; using System.Collections.Generic; using System.Linq; using System.Text; /* 简单说,抽象方法是需要 ...

  8. DockerToolbox安装docker - Windows 10家庭版

    由于本机使用的是win10家庭版操作系统,无法直接Docker for Windows安装,因此只好使用Docker Toolbox.在此记录一下过程,以供参考. 下载 因为toolbox安装包的官网 ...

  9. 洛谷 UVA12101 Prime Path 题解

    一道经典的BFS 用四个for搜索四位就行了,只要能推出怎么只变4位中的一位就很水了 #include<iostream> #include<cstring> #include ...

  10. Cesium 加载天地图

    网上有很多 就是没说 加载天地图需要开发者秘钥,这个需要去天地图官网申请一个就可以了,下面贴上源码 还有就是Cesium也是需要token的哈 <!DOCTYPE html> <ht ...