Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.

Example 1:

Input:

    5
/ \
3 6
/ \ \
2 4 7

Target = 9

Output: True
Example 2:

Input:

    5
/ \
3 6
/ \ \
2 4 7

Target = 28

Output: False

思路:

Two Sum的变种题,这次输入的是一个二叉树,还是用HashMap,然后遍历二叉树,用之前的方法找就行了。

还有一种方法是利用BST的性质,进行查找。

Java:

This method also works for those who are not BSTs. The idea is to use a hashtable to save the values of the nodes in the BST. Each time when we insert the value of a new node into the hashtable, we check if the hashtable contains k - node.val.

Time Complexity: O(n), Space Complexity: O(n).

public boolean findTarget(TreeNode root, int k) {
HashSet<Integer> set = new HashSet<>();
return dfs(root, set, k);
} public boolean dfs(TreeNode root, HashSet<Integer> set, int k){
if(root == null)return false;
if(set.contains(k - root.val))return true;
set.add(root.val);
return dfs(root.left, set, k) || dfs(root.right, set, k);
}

Java:

The idea is to use a sorted array to save the values of the nodes in the BST by using an inorder traversal. Then, we use two pointers which begins from the start and end of the array to find if there is a sum k.

Time Complexity: O(n), Space Complexity: O(n).

    public boolean findTarget(TreeNode root, int k) {
List<Integer> nums = new ArrayList<>();
inorder(root, nums);
for(int i = 0, j = nums.size()-1; i<j;){
if(nums.get(i) + nums.get(j) == k)return true;
if(nums.get(i) + nums.get(j) < k)i++;
else j--;
}
return false;
} public void inorder(TreeNode root, List<Integer> nums){
if(root == null)return;
inorder(root.left, nums);
nums.add(root.val);
inorder(root.right, nums);
}

Java:

The idea is to use binary search method. For each node, we check if k - node.val exists in this BST.

Time Complexity: O(nh), Space Complexity: O(h). h is the height of the tree, which is logn at best case, and n at worst case.

    public boolean findTarget(TreeNode root, int k) {
return dfs(root, root, k);
} public boolean dfs(TreeNode root, TreeNode cur, int k){
if(cur == null)return false;
return search(root, cur, k - cur.val) || dfs(root, cur.left, k) || dfs(root, cur.right, k);
} public boolean search(TreeNode root, TreeNode cur, int value){
if(root == null)return false;
return (root.val == value) && (root != cur)
|| (root.val < value) && search(root.right, cur, value)
|| (root.val > value) && search(root.left, cur, value);
}

Java:

public class Solution {
public boolean findTarget(TreeNode root, int k) {
List<Integer> list = new ArrayList<>();
inorder(root, list);
int i = 0;
int j = list.size() - 1;
while (i < j) {
int sum = list.get(i) + list.get(j);
if (sum == k) {
return true;
}
else if (sum < k) {
i++;
}
else {
j--;
}
}
return false;
} public List<Integer> inorder(TreeNode root, List<Integer> list) {
Stack<TreeNode> stack = new Stack<>();
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
list.add(root.val);
root = root.right;
}
return list;
}
}

Java:

public class Solution {
public boolean findTarget(TreeNode root, int k) {
Set<Integer> candidates = new HashSet<>();
Stack<TreeNode> stack = new Stack<>();
while (!stack.empty() || root != null) {
if (root != null) {
int val = root.val;
if (candidates.contains(val)) {
return true;
} else {
candidates.add(k - val);
}
stack.add(root);
root = root.left;
} else {
TreeNode node = stack.pop();
root = node.right;
}
}
return false;
}
}  

Python: 递归遍历BST + Two Sum

class Solution(object):
def findTarget(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: bool
"""
self.dset = set()
self.traverse(root)
for n in self.dset:
if k - n != n and k - n in self.dset:
return True
return False
def traverse(self, root):
if not root: return
self.dset.add(root.val)
self.traverse(root.left)
self.traverse(root.right)

Python: wo, 160 ms, faster than 9.23% of Python online submissions

class Solution(object):
def findTarget(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: bool
"""
nums = []
self.dfs(root, nums)
lookup = [] for num in nums:
if k - num in lookup:
return True
lookup.append(num)
return False def dfs(self, root, res):
if not root:
return
res.append(root.val)
self.dfs(root.left, res)
self.dfs(root.right, res)

Python: 递归遍历BST + 利用BST性质进行检索

class Solution(object):
def findTarget(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: bool
"""
self.root = root
self.k = k
return self.findNumber(root)
def findNumber(self, root):
if not root: return False
node = self.root
n = self.k - root.val
if n != root.val:
while node:
if node.val == n: return True
if n > node.val: node = node.right
else: node = node.left
return self.findNumber(root.left) or self.findNumber(root.right)

Python:

class Solution:
def findTarget(self, root, k):
candidates = set()
stack = []
while stack or root:
if root:
val = root.val
if val in candidates:
return True
else:
candidates.add(k - val)
stack.append(root)
root = root.left
else:
node = stack.pop()
root = node.right
return False

C++:

bool findTarget(TreeNode* root, int k) {
unordered_set<int> set;
return dfs(root, set, k);
} bool dfs(TreeNode* root, unordered_set<int>& set, int k){
if(root == NULL)return false;
if(set.count(k - root->val))return true;
set.insert(root->val);
return dfs(root->left, set, k) || dfs(root->right, set, k);
}

C++:

bool findTarget(TreeNode* root, int k) {
vector<int> nums;
inorder(root, nums);
for(int i = 0, j = nums.size()-1; i<j;){
if(nums[i] + nums[j] == k)return true;
(nums[i] + nums[j] < k)? i++ : j--;
}
return false;
} void inorder(TreeNode* root, vector<int>& nums){
if(root == NULL)return;
inorder(root->left, nums);
nums.push_back(root->val);
inorder(root->right, nums);
}

C++:  

bool findTarget(TreeNode* root, int k) {
return dfs(root, root, k);
} bool dfs(TreeNode* root, TreeNode* cur, int k){
if(cur == NULL)return false;
return search(root, cur, k - cur->val) || dfs(root, cur->left, k) || dfs(root, cur->right, k);
} bool search(TreeNode* root, TreeNode *cur, int value){
if(root == NULL)return false;
return (root->val == value) && (root != cur)
|| (root->val < value) && search(root->right, cur, value)
|| (root->val > value) && search(root->left, cur, value);
}

  

  

相似题目:

[LeetCode] 1. Two Sum 两数和

[LeetCode] 167. Two Sum II - Input array is sorted 两数和 II - 输入是有序的数组

[LeetCode] 170. Two Sum III - Data structure design 两数之和之三 - 数据结构设计

[LeetCode] 653. Two Sum IV - Input is a BST 两数之和之四 - 输入是二叉搜索树的更多相关文章

  1. [LeetCode] Two Sum IV - Input is a BST 两数之和之四 - 输入是二叉搜索树

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...

  2. [LeetCode] 167. Two Sum II - Input array is sorted 两数和 II - 输入是有序的数组

    Given an array of integers that is already sorted in ascending order, find two numbers such that the ...

  3. Leetcode653.Two Sum IV - Input is a BST两数之和4-输入BST

    给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true. struct TreeNode { int val; struct TreeNode * ...

  4. LeetCode 653 Two Sum IV - Input is a BST 解题报告

    题目要求 Given a Binary Search Tree and a target number, return true if there exist two elements in the ...

  5. LeetCode - 653. Two Sum IV - Input is a BST

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...

  6. LeetCode 653. Two Sum IV – Input is a BST

    Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...

  7. 167 Two Sum II - Input array is sorted 两数之和 II - 输入有序数组

    给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数.函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2.请注意,返回的下标值(i ...

  8. leetcode 1.Two Sum 、167. Two Sum II - Input array is sorted 、15. 3Sum 、16. 3Sum Closest 、 18. 4Sum 、653. Two Sum IV - Input is a BST

    1.two sum 用hash来存储数值和对应的位置索引,通过target-当前值来获得需要的值,然后再hash中寻找 错误代码1: Input:[3,2,4]6Output:[0,0]Expecte ...

  9. 【Leetcode_easy】653. Two Sum IV - Input is a BST

    problem 653. Two Sum IV - Input is a BST 参考 1. Leetcode_easy_653. Two Sum IV - Input is a BST; 完

随机推荐

  1. iOS 测试在应用发布前后的痛点探索以及解决方案

    作者-芈 峮 前言 iOS 开发从 2010 年开始在国内不断地升温,开发和测试相关的问题不绝于耳.iOS 测试主要涉及哪些内容?又有哪些挑战呢?带着疑问我们开始第一个大问题的讨论. iOS 测试的范 ...

  2. xpath+多进程爬取网易云音乐热歌榜。

    用到的工具,外链转换工具 网易云网站直接打开源代码里面并没有对应的歌曲信息,需要对url做处理, 查看网站源代码路径:发现把里面的#号去掉会显示所有内容, 右键打开的源代码路径:view-source ...

  3. 微信小程序~Flex布局

    有一点需要注意的是,你的小程序要求兼容到iOS8以下版本,需要开启样式自动补全.开启样式自动补全,在“设置”—“项目设置”—勾选“上传代码时样式自动补全”.

  4. centos7部署postgresql集群高可用 patroni + etcd 之patroni篇

    实验环境:centos7.4纯净版 postgres版本: 9.6.15 etcd版本:3.3.11 patroni版本:1.6.0 patroni介绍可参考:https://github.com/z ...

  5. C#编写简单的聊天程序(转)

    这是一篇基于Socket进行网络编程的入门文章,我对于网络编程的学习并不够深入,这篇文章是对于自己知识的一个巩固,同时希望能为初学的朋友提供一点参考.文章大体分为四个部分:程序的分析与设计.C#网络编 ...

  6. STM32L4R9使用HAL库调试IIC注意事项

    STM32使用Cubemx生成的代码中,用到IIC的驱动,但是始终不能读写,因此使用逻辑分析仪,发现原本地址为0x58的写成了0x20,因此肯定是地址错了.因此,总结如下: 1.需要逻辑分析仪分析II ...

  7. js 对嵌套页面的父页面进行跳转

    window.top.location.href = '/stores';

  8. LeetCode 855. Exam Room

    原题链接在这里:https://leetcode.com/problems/exam-room/ 题目: In an exam room, there are N seats in a single ...

  9. Django 实现文件下载

    1. 思路: 文件,让用户下载 - a标签+静态文件 - 设置响应头(django如何实现文件下载) 2. a标签实现 <a href="/static/xxx.xlsx"& ...

  10. tensorflow2.0 学习(一)

    虽说是按<TensorFlow深度学习>这本书来学习的,但是总会碰到新的问题!记录下这些问题,有利于巩固知新. 之前学过一些tensorflow1.0的知识,到RNN这章节,后面没有再继续 ...