Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bottom, column by column).

If two nodes are in the same row and column, the order should be from left to right.

Examples:
Given binary tree [3,9,20,null,null,15,7],

    3
/ \
9 20
/ \
15 7

return its vertical order traversal as:

[
[9],
[3,15],
[20],
[7]
]

Given binary tree [3,9,20,4,5,2,7],

    _3_
/ \
9 20
/ \ / \
4 5 2 7

return its vertical order traversal as:

[
[4],
[9],
[3,5,2],
[20],
[7]
]

二叉树的垂直遍历。

解法:如果一个node的column是 i,那么它的左子树column就是i - 1,右子树column就是i + 1。建立一个TreeColumnNode,包含一个TreeNode,以及一个column value,然后用level order traversal进行计算,并用一个HashMap保存column value以及相同value的点。也要设置一个min column value和一个max column value,方便最后按照从小到大顺序获取hashmap里的值输出。

Java:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private class TreeColumnNode{
public TreeNode treeNode;
int col;
public TreeColumnNode(TreeNode node, int col) {
this.treeNode = node;
this.col = col;
}
} public List<List<Integer>> verticalOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if(root == null) {
return res;
}
Queue<TreeColumnNode> queue = new LinkedList<>();
Map<Integer, List<Integer>> map = new HashMap<>();
queue.offer(new TreeColumnNode(root, 0));
int curLevel = 1;
int nextLevel = 0;
int min = 0;
int max = 0; while(!queue.isEmpty()) {
TreeColumnNode node = queue.poll();
if(map.containsKey(node.col)) {
map.get(node.col).add(node.treeNode.val);
} else {
map.put(node.col, new ArrayList<Integer>(Arrays.asList(node.treeNode.val)));
}
curLevel--; if(node.treeNode.left != null) {
queue.offer(new TreeColumnNode(node.treeNode.left, node.col - 1));
nextLevel++;
min = Math.min(node.col - 1, min);
}
if(node.treeNode.right != null) {
queue.offer(new TreeColumnNode(node.treeNode.right, node.col + 1));
nextLevel++;
max = Math.max(node.col + 1, max);
}
if(curLevel == 0) {
curLevel = nextLevel;
nextLevel = 0;
}
} for(int i = min; i <= max; i++) {
res.add(map.get(i));
} return res;
}
}

Java:

class Solution {
public List<List<Integer>> verticalOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if(root==null)
return result; // level and list
HashMap<Integer, ArrayList<Integer>> map = new HashMap<Integer, ArrayList<Integer>>(); LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
LinkedList<Integer> level = new LinkedList<Integer>(); queue.offer(root);
level.offer(0); int minLevel=0;
int maxLevel=0; while(!queue.isEmpty()){
TreeNode p = queue.poll();
int l = level.poll(); //track min and max levels
minLevel=Math.min(minLevel, l);
maxLevel=Math.max(maxLevel, l); if(map.containsKey(l)){
map.get(l).add(p.val);
}else{
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(p.val);
map.put(l, list);
} if(p.left!=null){
queue.offer(p.left);
level.offer(l-1);
} if(p.right!=null){
queue.offer(p.right);
level.offer(l+1);
}
} for(int i=minLevel; i<=maxLevel; i++){
if(map.containsKey(i)){
result.add(map.get(i));
}
} return result;
}
}

Python:  BFS + hash solution.

class Solution(object):
def verticalOrder(self, root):
"""
:type root: TreeNode
:rtype: List[List[int]]
"""
cols = collections.defaultdict(list)
queue = [(root, 0)]
for node, i in queue:
if node:
cols[i].append(node.val)
queue += (node.left, i - 1), (node.right, i + 1)
return [cols[i] for i in xrange(min(cols.keys()), max(cols.keys()) + 1)] \
if cols else []

C++:

class Solution {
public:
vector<vector<int>> verticalOrder(TreeNode* root) {
vector<vector<int>> res;
if (!root) return res;
map<int, vector<int>> m;
queue<pair<int, TreeNode*>> q;
q.push({0, root});
while (!q.empty()) {
auto a = q.front(); q.pop();
m[a.first].push_back(a.second->val);
if (a.second->left) q.push({a.first - 1, a.second->left});
if (a.second->right) q.push({a.first + 1, a.second->right});
}
for (auto a : m) {
res.push_back(a.second);
}
return res;
}
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<vector<int>> verticalOrder(TreeNode* root) {
unordered_map<int, vector<int>> cols;
vector<pair<TreeNode *, int>> queue{{root, 0}};
for (int i = 0; i < queue.size(); ++i) {
TreeNode *node;
int j;
tie(node, j) = queue[i];
if (node) {
cols[j].emplace_back(node->val);
queue.push_back({node->left, j - 1});
queue.push_back({node->right, j + 1});
}
}
int min_idx = numeric_limits<int>::max(),
max_idx = numeric_limits<int>::min();
for (const auto& kvp : cols) {
min_idx = min(min_idx, kvp.first);
max_idx = max(max_idx, kvp.first);
}
vector<vector<int>> res;
for (int i = min_idx; !cols.empty() && i <= max_idx; ++i) {
res.emplace_back(move(cols[i]));
}
return res;
}
};

  

All LeetCode Questions List 题目汇总

[LeetCode] 314. Binary Tree Vertical Order Traversal 二叉树的垂直遍历的更多相关文章

  1. [LeetCode] 314. Binary Tree Vertical Order Traversal 二叉树的竖直遍历

    Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bott ...

  2. [leetcode]314. Binary Tree Vertical Order Traversal二叉树垂直遍历

    Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bott ...

  3. LeetCode 314. Binary Tree Vertical Order Traversal

    原题链接在这里:https://leetcode.com/problems/binary-tree-vertical-order-traversal/ 题目: Given a binary tree, ...

  4. leetcode 题解:Binary Tree Level Order Traversal (二叉树的层序遍历)

    题目: Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to ri ...

  5. LeetCode 102. Binary Tree Level Order Traversal 二叉树的层次遍历 C++

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  6. 【LeetCode】Binary Tree Level Order Traversal(二叉树的层次遍历)

    这道题是LeetCode里的第102道题. 题目要求: 给定一个二叉树,返回其按层次遍历的节点值. (即逐层地,从左到右访问所有节点). 例如: 给定二叉树: [3,9,20,null,null,15 ...

  7. leetcode 102.Binary Tree Level Order Traversal 二叉树的层次遍历

    基础为用队列实现二叉树的层序遍历,本题变体是分别存储某一层的元素,那么只要知道,每一层的元素都是上一层的子元素,那么只要在while循环里面加个for循环,将当前队列的值(即本层元素)全部访问后再执行 ...

  8. [LeetCode] 102. Binary Tree Level Order Traversal 二叉树层序遍历

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  9. [LeetCode] Binary Tree Vertical Order Traversal 二叉树的竖直遍历

    Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bott ...

随机推荐

  1. dijkstra,belllman-ford,spfa最短路算法

    参考博客 时间复杂度对比: Dijkstra:  O(n2) Dijkstra + 优先队列(堆优化):  O(E+V∗logV) SPFA:  O(k∗E) ,k为每个节点进入队列的次数,一般小于等 ...

  2. mysql优化过程中遇见的坑(mysql优化问题特别注意)

    不要听信你看到的关于优化的“绝对真理”,包括本文所讨论的内容,而应该是在实际的业务场景下通过测试来验证你关于执行计划以及响应时间的假设. 单条查询最后添加 LIMIT 1,停止全表扫描. 对于char ...

  3. myshell

    要求 利用fork,exec,wait编写一个具有执行命令功能的shell

  4. Kafaka 总结

    Kafka是一个分布式的Streaming处理平台,Kafka可以用于数据库中数据的导入导出,也可以用于实时流的处理,但是Kafka最核心的功能就是作为分布式的消息中间件. Kafka集群是由多个Br ...

  5. [TJOI2015]概率论——期望&&母函数

    题意 求一个含有 $n$ 个结点的有序二叉树的叶子节点的期望个数.($n \leq 10^9$) 分析 一堆推导..... 得 $ans = \frac{n(n+1)}{2(2n-1)}$ #incl ...

  6. AtCoder Beginner Contest 127 解题报告

    传送门 非常遗憾.当天晚上错过这一场.不过感觉也会掉分的吧.后面两题偏结论题,打了的话应该想不出来. A - Ferris Wheel #include <bits/stdc++.h> u ...

  7. tbls ci 友好的数据库文档化工具

    tbls 是用golang 编写的数据库文档化工具,当前支持的数据库有pg.mysql.bigquery 此工具同时提供了变更对比.lint 校验,生成是markdown格式的 简单使用 安装 mac ...

  8. 洛谷 P1508 Likecloud-吃、吃、吃 题解

    P1508 Likecloud-吃.吃.吃 题目背景 问世间,青春期为何物? 答曰:"甲亢,甲亢,再甲亢:挨饿,挨饿,再挨饿!" 题目描述 正处在某一特定时期之中的李大水牛由于消化 ...

  9. PKUWC2019 Round 2 没去祭

    因为今年有两场 PKUWC,所以叫 PKUWC2019 Round 2. 因为一些沙雕原因,今年去不了了. Day 0 一如既往,没有集训就去上数学课,今天讲几何变换,一如既往的只会说"少女 ...

  10. 【luoguP2995】[USACO10NOV]牛的照片Cow Photographs

    题目链接 首先求出原序列的逆序对个数, 然后考虑每次将目标序列最前面的数放在最后,即最小的数变为最大 设最小数的位置是\(p\),那么逆序对的个数增加了\(n-p\),减少了\(p-1\) #incl ...