13-numpy笔记-莫烦pandas-1
代码
import pandas as pd
import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-')
print(s) dates = pd.date_range('20160101', periods=6)
print('-2-')
print(dates) # index 是行的key; 默认就是数字
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a','b','c','d'])
print('-3-')
print(df) df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print('-4-')
print(df1) df2 = pd.DataFrame({'A':1.,
'B':pd.Timestamp('20130102'),
'C':pd.Series(1,index=list(range(4)), dtype = 'float32'),
'D':np.array([3]*4,dtype='int32'),
'E':pd.Categorical(["test","train","test","train"]),
'F':'foo'})
print('-5-')
print(df2)
print('-6-')
print(df2.dtypes)
print('-7-')
print(df2.index)
print('-8-')
print(df2.columns)
print('-9-')
print(df2.values) print('-10-')
#只会计算数字串
print(df2.describe()) print('-11-')
print(df2.T) print('-12-')
# 对 ABCD排序
print(df2.sort_index(axis=1, ascending=False)) print('-13-')
# 对123排序
print(df2.sort_index(axis=0, ascending=False)) print('-14-')
print(df2.sort_values(by='E'))
输出
-1-
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
-2-
DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', freq='D')
-3-
a b c d
2016-01-01 -0.636080 -0.411646 1.167693 -0.085643
2016-01-02 -0.931738 -0.656105 0.833493 0.866367
2016-01-03 -0.495047 -0.131291 -0.757423 -0.783154
2016-01-04 -0.207423 0.261732 0.300315 -0.674217
2016-01-05 0.241664 0.560630 -0.057852 -0.411710
2016-01-06 -0.964392 0.990477 0.926594 0.388210
-4-
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
-5-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
-6-
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
-7-
Int64Index([0, 1, 2, 3], dtype='int64')
-8-
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
-9-
[[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']]
-10-
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
-11-
0 ... 3
A 1 ... 1
B 2013-01-02 00:00:00 ... 2013-01-02 00:00:00
C 1 ... 1
D 3 ... 3
E test ... train
F foo ... foo [6 rows x 4 columns]
-12-
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
-13-
A B C D E F
3 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
0 1.0 2013-01-02 1.0 3 test foo
-14-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
3 1.0 2013-01-02 1.0 3 train foo
13-numpy笔记-莫烦pandas-1的更多相关文章
- 16-numpy笔记-莫烦pandas-4
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 15-numpy笔记-莫烦pandas-3
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 14-numpy笔记-莫烦pandas-2
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 18-numpy笔记-莫烦pandas-6-plot显示
代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...
- 17-numpy笔记-莫烦pandas-5
代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...
- 12-numpy笔记-莫烦基本操作2
代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...
- 11-numpy笔记-莫烦基础操作1
代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
随机推荐
- 剑指offer:剪绳子(找规律,贪心算法,动态规划)
1. 题目描述 /* 题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1] ...
- 物联网架构成长之路(37)-基于C#开发串口工具
0. 前言 作为物联网平台开发,最基础的工具链还是要有的.前几篇博客,介绍了用C#开发一个MQTT的客户端,用于模拟设备连接平台,并发送数据到平台.但是对于一些硬件来说,可能会用到串口uart来发送数 ...
- java程序 cpu占用过高分析
linux终端下用 top命令看到cpu占用超过100%.之所以超过100%.说明cpu是多核.默认top显示的是cpu加起来的使用率,运行top后按大键盘1看看,可以显示每个cpu的使用率,top里 ...
- Python 下载图片的三种方法
import os os.makedirs('./image/', exist_ok=True) IMAGE_URL = "http://image.nationalgeographic.c ...
- EF Core 根据已有的数据库来生成 EF 领域模型
1. 如图: 2. 命令 <Project Sdk="Microsoft.NET.Sdk"> <PropertyGroup> <TargetFrame ...
- 分布式应用的未来 — Distributionless
作者丨阿里云高级技术专家 至简(李云) 在技术变革推动社会发展这一时代背景下,大量支撑规模化分布式应用的技术创新.创造与创业应用而生,Could Native.Service Mesh.Serverl ...
- 使用SolrJ(即java客户端)开发Solr。
1.什么是SolrJ呢? 答:Solrj是访问Solr服务的java客户端,提供索引和搜索的请求方法,SolrJ通常在嵌入在业务系统中,通过SolrJ的API接口操作Solr服务.开始配置schema ...
- SqlServer 开篇简介
实例:我们的电脑中可以安装一个或多个SqlServer实例,每一个SqlServer实例可以包含一个或者多个数据库. 架构:数据库中,又有一个或者多个架构.架构里面包含:表,视图,存储过程. 文件与文 ...
- WPF中绘图(含调用GDI+)
private void DrawStuff() { // //if (buffer == null) //{ // buffer = new RenderTargetBitmap((int)Back ...
- asp.net 创建虚拟目录 iis创建虚拟目录
这几天本人接了个档案管理查询系统的小项目,踩过的坑. 其实功能都挺简单的,大致要求客户有很多pdf文档,为了方便管理,所有要开发一个相当于文件管理系统,本人正好有现成的文件管理系统,修改下就可以.其中 ...