13-numpy笔记-莫烦pandas-1
代码
import pandas as pd
import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-')
print(s) dates = pd.date_range('20160101', periods=6)
print('-2-')
print(dates) # index 是行的key; 默认就是数字
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a','b','c','d'])
print('-3-')
print(df) df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print('-4-')
print(df1) df2 = pd.DataFrame({'A':1.,
'B':pd.Timestamp('20130102'),
'C':pd.Series(1,index=list(range(4)), dtype = 'float32'),
'D':np.array([3]*4,dtype='int32'),
'E':pd.Categorical(["test","train","test","train"]),
'F':'foo'})
print('-5-')
print(df2)
print('-6-')
print(df2.dtypes)
print('-7-')
print(df2.index)
print('-8-')
print(df2.columns)
print('-9-')
print(df2.values) print('-10-')
#只会计算数字串
print(df2.describe()) print('-11-')
print(df2.T) print('-12-')
# 对 ABCD排序
print(df2.sort_index(axis=1, ascending=False)) print('-13-')
# 对123排序
print(df2.sort_index(axis=0, ascending=False)) print('-14-')
print(df2.sort_values(by='E'))
输出
-1-
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
-2-
DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', freq='D')
-3-
a b c d
2016-01-01 -0.636080 -0.411646 1.167693 -0.085643
2016-01-02 -0.931738 -0.656105 0.833493 0.866367
2016-01-03 -0.495047 -0.131291 -0.757423 -0.783154
2016-01-04 -0.207423 0.261732 0.300315 -0.674217
2016-01-05 0.241664 0.560630 -0.057852 -0.411710
2016-01-06 -0.964392 0.990477 0.926594 0.388210
-4-
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
-5-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
-6-
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
-7-
Int64Index([0, 1, 2, 3], dtype='int64')
-8-
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
-9-
[[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']]
-10-
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
-11-
0 ... 3
A 1 ... 1
B 2013-01-02 00:00:00 ... 2013-01-02 00:00:00
C 1 ... 1
D 3 ... 3
E test ... train
F foo ... foo [6 rows x 4 columns]
-12-
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
-13-
A B C D E F
3 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
0 1.0 2013-01-02 1.0 3 test foo
-14-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
3 1.0 2013-01-02 1.0 3 train foo
13-numpy笔记-莫烦pandas-1的更多相关文章
- 16-numpy笔记-莫烦pandas-4
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 15-numpy笔记-莫烦pandas-3
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 14-numpy笔记-莫烦pandas-2
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 18-numpy笔记-莫烦pandas-6-plot显示
代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...
- 17-numpy笔记-莫烦pandas-5
代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...
- 12-numpy笔记-莫烦基本操作2
代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...
- 11-numpy笔记-莫烦基础操作1
代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
- scikit-learn学习笔记-bili莫烦
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...
随机推荐
- git使用遇到问题1
1.上传代码过程中遇到 git help gc错误解决方法,有两种方式,推荐第一种方式. $ git fsck $ git gc --prune=now 如果执行完上面的命令还是不行的话,可以尝试删掉 ...
- Docker 简单发布dotnet core项目 文本版
原文:https://www.cnblogs.com/chuankang/p/9474591.html docker发布dotnet core简单流程 照着步骤来基本没错 但是有几个要注意的地方: v ...
- Luogu P5416 [CTSC2016]时空旅行
第一次写线段树分治的题目,没想到是道这么毒的题233 首先发现题目里的\((x,y,z,c)\)就是在放屁,只有\((x,c)\)是有用的 因此我们可以把题意转化为,在某一个时间节点上,求出所有元素的 ...
- java.util.concurrent各组件分析 一 sun.misc.Unsafe
java.util.concurrent各组件分析 一 sun.misc.Unsafe 说到concurrent包也叫并发包,该包下主要是线程操作,方便的进行并发编程,提到并发那么锁自然是不可缺少的, ...
- python asyncio 关闭task
import asyncio import time async def get_html(sleep_times): print("waiting") await asyncio ...
- Python 多进程池
def get_html(n): time.sleep(n) print("sub_progress success") return n # 多进程池 pool = multip ...
- 你必须知道的EF知识和经验(转)
注意:以下内容如果没有特别申明,默认使用的EF6.0版本,code first模式. 推荐MiniProfiler插件 工欲善其事,必先利其器. 我们使用EF和在很大程度提高了开发速度,不过随之带来的 ...
- 小记 .NET Core 3.0 下 WPF 是如何运行的
1. 解决方案架构 如图: 2. 生成的代码 如图: /// <summary> /// App /// </summary> public partial class App ...
- vsdbg 下载方法 使用下载工具下载后手动安装
vsdbg国内下载太慢了,这里提供一个使用下载工具下载后,手动安装的处理方法 查看vs build控制台输出: 1>C:\WINDOWS\System32\WindowsPowerShell\v ...
- js 加密混淆工具
访问路径:https://www.sojson.com/javascriptobfuscator.html