代码

import pandas as pd
import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-')
print(s) dates = pd.date_range('20160101', periods=6)
print('-2-')
print(dates) # index 是行的key; 默认就是数字
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a','b','c','d'])
print('-3-')
print(df) df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print('-4-')
print(df1) df2 = pd.DataFrame({'A':1.,
'B':pd.Timestamp('20130102'),
'C':pd.Series(1,index=list(range(4)), dtype = 'float32'),
'D':np.array([3]*4,dtype='int32'),
'E':pd.Categorical(["test","train","test","train"]),
'F':'foo'})
print('-5-')
print(df2)
print('-6-')
print(df2.dtypes)
print('-7-')
print(df2.index)
print('-8-')
print(df2.columns)
print('-9-')
print(df2.values) print('-10-')
#只会计算数字串
print(df2.describe()) print('-11-')
print(df2.T) print('-12-')
# 对 ABCD排序
print(df2.sort_index(axis=1, ascending=False)) print('-13-')
# 对123排序
print(df2.sort_index(axis=0, ascending=False)) print('-14-')
print(df2.sort_values(by='E'))

  

输出

-1-
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
-2-
DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', freq='D')
-3-
a b c d
2016-01-01 -0.636080 -0.411646 1.167693 -0.085643
2016-01-02 -0.931738 -0.656105 0.833493 0.866367
2016-01-03 -0.495047 -0.131291 -0.757423 -0.783154
2016-01-04 -0.207423 0.261732 0.300315 -0.674217
2016-01-05 0.241664 0.560630 -0.057852 -0.411710
2016-01-06 -0.964392 0.990477 0.926594 0.388210
-4-
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
-5-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
-6-
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
-7-
Int64Index([0, 1, 2, 3], dtype='int64')
-8-
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
-9-
[[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2013-01-02 00:00:00') 1.0 3 'train' 'foo']]
-10-
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
-11-
0 ... 3
A 1 ... 1
B 2013-01-02 00:00:00 ... 2013-01-02 00:00:00
C 1 ... 1
D 3 ... 3
E test ... train
F foo ... foo [6 rows x 4 columns]
-12-
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
-13-
A B C D E F
3 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
0 1.0 2013-01-02 1.0 3 test foo
-14-
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
2 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
3 1.0 2013-01-02 1.0 3 train foo

  

13-numpy笔记-莫烦pandas-1的更多相关文章

  1. 16-numpy笔记-莫烦pandas-4

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  4. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  5. 17-numpy笔记-莫烦pandas-5

    代码 import pandas as pd import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'], 'A':['A0', ...

  6. 12-numpy笔记-莫烦基本操作2

    代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...

  7. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  8. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

  9. scikit-learn学习笔记-bili莫烦

    bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_select ...

随机推荐

  1. 设计模式-抽象工厂模式(AbstractFactory)(创建型模式)

    //以下代码来源: 设计模式精解-GoF 23种设计模式解析附C++实现源码 //Product.h #pragma once class AbstractProductA { public: vir ...

  2. Python接口自动化测试框架实战 从设计到开发

    第1章 课程介绍(不要错过)本章主要讲解课程的详细安排.课程学习要求.课程面向用户等,让大家很直观的对课程有整体认知! 第2章 接口测试工具Fiddler的运用本章重点讲解如何抓app\web的htt ...

  3. 三台三层交换机OSPF多区域划分动态路由实验

    一.实验拓扑 二.实验步骤 1.给主机设置IP,网关:给交换机划分VLAN,给VLAN划分端口,给VLAN设置IP 2.启用OSPF.宣告网段(network 网络地址 反掩码 区域名     其中0 ...

  4. Java文件上传的几种方式

    文件上传与文件上传一样重要.在Java中,要实现文件上传,可以有两种方式: 1.通过Servlet类上传 2.通过Struts框架实现上传 这两种方式的根本还是通过Servlet进行IO流的操作. 一 ...

  5. Prometheus神器之监控K8s集群

    Prometheus 简介 Prometheus是SoundCloud开源的一款开源软件.它的实现参考了Google内部的监控实现,与源自Google的Kubernetes结合起来非常合适.另外相比i ...

  6. oracle使用sequence批量写数据

    本博客是对之前写的博客Oracle批量新增更新数据的补充,oracle的知识真是多,其实要学精任何一门知识都是要花大量时间的,正所谓: 学如逆水行舟,不进则退 先介绍oracle sequence的一 ...

  7. jQuery 源码分析(四) each函数 $.each和$.fn.each方法 详解

    $.each一般用来遍历一个数组或对象,$.fn.each()就是指jQuery实例可以执行的操作(因为$.fn是jQuery对象的原型) $.each用来遍历一个数组或对象,并依次执行回掉函数,最后 ...

  8. 如何使用gitlab自建golang基础库

    这里以go mod方式建立golang基础库 一.gitlab创建项目golib 地址为gitlab.xxx.com/base/golib 示例如下 go mod初始化命令 go mod init g ...

  9. python3的hashlib库sha256、pbkdf2_hmac、blake2b基本用法

    hashlib.sha256: import hashlib x = hashlib.sha256()x.update(b"asd")print("x_1 = " ...

  10. Navicat for Mysql安装及破解教程

    一.Navicat for Mysql安装 下载链接:https://navicatformysql.en.softonic.com/ 点击download下载. 下载完成后双击安装 二.破解 破解工 ...