【leetcode-62,63,64 动态规划】 不同路径,最小路径和
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
基础的动态规划问题,适合理解动态规范的想法
没有像之前设一个行和列+1的数组,这样更直观些不容易犯错
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length; //行数
int n = grid[0].length; //列数
int[][] dp = new int[m][n];
//初始化第一行和第一列
dp[0][0] = grid[0][0];
for (int i=1;i<n;i++) {
dp[0][i] = dp[0][i-1] + grid[0][i];
}
for (int i=1;i<m;i++) {
dp[i][0] = dp[i-1][0] +grid[i][0];
}
for (int i=1;i<m;i++) {
for (int j=1;j<n;j++) {
dp[i][j] = grid[i][j] + Math.min(dp[i-1][j],dp[i][j-1]);
}
}
return dp[m-1][n-1];
}
}
【leetcode-62 动态规划】 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28 与上题类似,基础
我的:
class Solution {
public int uniquePaths(int m,int n) {
int[][] dp = new int[m][n];
//初始化第一行和第一列
dp[0][0] = 1;
for (int i=1;i<n;i++) {
dp[0][i] = 1;
}
for (int i=1;i<m;i++) {
dp[i][0] = 1;
}
for (int i=1;i<m;i++) {
for (int j=1;j<n;j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
63. 不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有2条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
//初始化第一行和第一列
if (obstacleGrid[0][0] == 1) {
dp[0][0] = 0;
} else {
dp[0][0] = 1;
}
for (int i=1;i<n;i++) {
if (obstacleGrid[0][i] == 1)
dp[0][i] = 0;
else
dp[0][i] = dp[0][i-1];
}
for (int i=1;i<m;i++) {
if (obstacleGrid[i][0] == 1)
dp[i][0] = 0;
else
dp[i][0] = dp[i-1][0];
}
for (int i=1;i<m;i++) {
for (int j=1;j<n;j++) {
if (obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
【leetcode-62,63,64 动态规划】 不同路径,最小路径和的更多相关文章
- [LeetCode] 64. Minimum Path Sum 最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [leetcode]64. Minimum Path Sum最小路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- LeetCode 62,从动态规划想到更好的解法
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第36篇文章,我们一起来看下LeetCode的62题,Unique Paths. 题意 其实这是一道老掉牙的题目了 ...
- LeetCode 62. Unique Paths(所有不同的路径)
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- leetcode@ [62/63] Unique Paths II
class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& obstacleG ...
- LeetCode OJ:Minimum Path Sum(最小路径和)
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- [LeetCode] 62. Unique Paths 唯一路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- (step6.3.4)hdu 1151(Air Raid——最小路径覆盖)
题意: 一个镇里所有的路都是单向路且不会组成回路. 派一些伞兵去那个镇里,要到达所有的路口,有一些或者没有伞兵可以不去那些路口,只要其他人能完成这个任务.每个在一个路口着陆了的伞兵可以沿着街去 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
随机推荐
- ring3 x32挂起进程注入原理.
目录 一丶挂起进程注入简介与前言 二丶ShellCode核心讲解. 2.1 保存Contex.EIP 2.2 DLL路径重定位 2.3 LoadLibrary的重定位 三丶 全部C++代码.拷贝即可使 ...
- 第10组 Alpha冲刺(2/4)
队名:凹凸曼 组长博客 作业博客 组员实践情况 童景霖 过去两天完成了哪些任务 文字/口头描述 继续学习Android studio和Java 完善项目APP原型 展示GitHub当日代码/文档签入记 ...
- WPF——OXY绘图
private PlotModel _plotModel; public PlotModel plotModel { get { return _plotModel; } set { _plotMod ...
- docker之网络桥接的两种方式
第一种:直接敲命令方式配置安装网桥管理工具包:bridge-utile # yum install bridge-utils -y 1.先查看ip 是否有br0ip a2.brctl show 3使用 ...
- eclipse修改代码没用、debug无法进断点、
设置eclipse自动编译代码 处理tomcat不进断点问题 添加需要debug的项目 以上操作还是不行的话 可以把tomcat删除重新添加试试看
- mvn常见参数命令讲解
关于-N -N,--non-recursive Do not recurse into sub-projects 意思是,不递归到子项目(子模块). 举例: 一个父项目下Father面有3个子项目A. ...
- SAS 获取系统选项设置的过程步 PROC OPTIONS OPTION=()
PROC OPTIONS OPTION=(VALIDVARNAME LS);RUN;
- [转]import xxx from 和 import {xxx} from的区别
原文地址:https://www.cnblogs.com/Abner5/p/7256043.html 1.vue import FunName from ‘../xxx’ 1.js export de ...
- 关于“javax.servlet.include.request_uri”属性值 include 请求 RequestDispatcher.include
在springMVC的DispatcherServlet类的doService方法中有如下代码: 1 2 3 4 5 6 7 8 9 10 if (WebUtils.isIncludeRequest( ...
- [转][c++]关于构造函数不能有返回类型的错误
转自:https://blog.csdn.net/sky_freebird/article/details/6687892 构造函数不能有返回类型,可是自己定义的构造函数本来就没写返回类型啊. 最后发 ...