P4721 【模板】分治 FFT

链接

luogu

题目描述

给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其中

\[f[i]=\sum_{j=1}^if[i-j]g[j]
\]

边界为 \(f[0]=1\) 。答案模 \(998244353\) 。

思路

分治+ntt。跑900+ms

其实limit只要设到区间长度就可以了,其他的是用不到的。对前半部分也没得影响。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=4e5+7,mod=998244353;
int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
int n,len_a,len_b,p,limit;
int f[N],g[N],a[N],b[N],r[N];
int q_pow(int a,int b) {
int ans=1;
while(b) {
if(b&1) ans=1LL*ans*a%mod;
a=1LL*a*a%mod;
b>>=1;
}
return ans;
}
void ntt(int *a,int type) {
for(int i=0;i<=limit;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1) {
int Wn=q_pow(3,(mod-1)/(mid<<1));
for(int i=0;i<limit;i+=(mid<<1)) {
for(int j=0,w=1;j<mid;++j,w=1LL*w*Wn%mod) {
int x=a[i+j],y=1LL*w*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod;
a[i+j+mid]=(x-y+mod)%mod;
}
}
}
if(type==-1) {
reverse(&a[1],&a[limit]);
int inv=q_pow(limit,mod-2);
for(int i=0;i<=limit;++i) a[i]=1LL*a[i]*inv%mod;
}
}
void init() {
limit=1,p=0;
while(limit<len_b) limit<<=1,p++;
for(int i=len_a;i<=limit;++i) a[i]=0;
for(int i=len_b;i<=limit;++i) b[i]=0;
for(int i=0;i<=limit;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(p-1));
}
void solve(int l,int r) {
if(l>=r) return;
int mid=(l+r)>>1;
solve(l,mid);
len_a=0,len_b=0;
for(int i=l;i<=mid;++i) a[len_a++]=f[i];
for(int i=1;i<=r-l;++i) b[len_b++]=g[i];
init();
ntt(a,1),ntt(b,1);
for(int i=0;i<=limit;++i) a[i]=1LL*a[i]*b[i]%mod;
ntt(a,-1);
for(int i=mid+1;i<=r;++i) f[i]=(f[i]+a[i-l-1])%mod;
solve(mid+1,r);
}
int main() {
n=read();
for(int i=1;i<n;++i) g[i]=read();
f[0]=1;
solve(0,n-1);
for(int i=0;i<n;++i) printf("%d ",f[i]);
return 0;
}

luoguP4721 【模板】分治 FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 解题:洛谷4721 [模板]分治FFT

    题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...

  3. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  4. 【luoguP4721】分治 FFT

    description 给定长度为\(n-1\)的数组\(g[1],g[2],..,g[n-1]\),求\(f[0],f[1],..,f[n-1]\),其中 \[f[i]=\sum_{j=1}^if[ ...

  5. luoguP4721 【模板】分治 FFT (分治NTT)

    给定 $g[1....n-1]$,求 $f[0],f[1],...,f[n-1]$,其中   $f[i]=\sum_{j=1}^{i}f[i-j]g[j]$    变界为 $f[0]=1$ 答案模 9 ...

  6. 洛谷 P4721 【模板】分治 FFT 解题报告

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...

  7. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  8. LG4721 【模板】分治 FFT

    P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 $n-1$ 的数组 $g[1],g[2],..,g[n-1]$,求 $f[0],f[1],..,f[n-1]$ ...

  9. P4721【模板】分治 FFT

    瞎扯 虽然说是FFT但是还是写了一发NTT(笑) 然后忘了IDFT之后要除个n懵逼了好久 以及递归的时候忘了边界无限RE 思路 朴素算法 分治FFT 考虑到题目要求求这样的一个式子 \[ F_x=\S ...

随机推荐

  1. ad域的那些事儿

    先附上参考链接,有空再来整理 基础知识:https://www.cnblogs.com/cnjavahome/p/9029665.html ad域的操作:https://www.cnblogs.com ...

  2. SQL server中常用sql语句

    --循环执行插入10000条数据 declare @ID intbeginset @ID=1 while @ID<=10000begininsert into table_name values ...

  3. Angular复习笔记6-依赖注入

    Angular复习笔记6-依赖注入 依赖注入(DependencyInjection)是Angular实现重要功能的一种设计模式.一个大型应用的开发通常会涉及很多组件和服务,这些组件和服务之间有着错综 ...

  4. Options of the DB storage of prometheus

    参考: // Options of the DB storage. type Options struct { // The timestamp range of head blocks after ...

  5. Spring Security 解析(三) —— 个性化认证 以及 RememberMe 实现

    Spring Security 解析(三) -- 个性化认证 以及 RememberMe 实现   在学习Spring Cloud 时,遇到了授权服务oauth 相关内容时,总是一知半解,因此决定先把 ...

  6. 【Java】调用摄像头进行拍照并保存【详细】以及处理no jniopencv_core in java.library.path的一种方法

    [之前困扰笔者的问题描述]   date:2019.12.18 网上教程很多,但是没有看见完整的,所以写一个出来. 调用摄像头需要javaCV的jar包和openCV的jar包,现在已经不需要安装包了 ...

  7. Java自学-日期 日期格式化

    Java中使用SimpleDateFormat 进行日期格式化类 SimpleDateFormat 日期格式化类 示例 1 : 日期转字符串 y 代表年 M 代表月 d 代表日 H 代表24进制的小时 ...

  8. drf--认证组件

    目录 认证简介 用户认证RBAC(Role-Based Access Control) 局部使用 全局使用 源码分析 认证简介 使用场景:有些接口在进行访问时,需要确认用户是否已经登录,比如:用户需要 ...

  9. [Linux] TMUX Python版本设置

    TMUX Python版本设置 本地mac的终端已经设置python版本为python3.7, 结果进入tmux时,一直时python2.7. # 本地.bash_profile alias pyth ...

  10. redis-存储命令

    一.String类型: 1.赋值/取值 set key valueget key 2.设置/获取多个键值   mset key1 value1 key2 value2 …   mget key1 ke ...