简介

pandas是一个强大的Python数据分析的工具包,它是基于Numpy构建的,正因pandas的出现,让Python语言也成为使用最广泛而且强大的数据分析环境之一。

Pandas的主要功能:

  1. 具备对其功能的数据结构DataFrame,Series
  2. 集成时间序列功能
  3. 提供丰富的数学运算和操作
  4. 灵活处理缺失数据
  • 安装

>: pip install pandas

  • 引用方法:

import pandas as pd

Series

Series是一种类似于一维数组的对象,由一组数据和一组与之相关的数据标签(索引)组成

创建方式

  • 普通创建

将数组索引以及数组的值打印出来,索引在左,值在右,由于没有为数据指定索引,于是会自动创建一个0到N-1(N为数据的长度)的整数型索引,取值的时候可以通过索引取

  • 自定义索引0.1

index是一个索引列表,里面包含的是字符串,依然可以通过默认索引取值。

  • 自定义索引0.2

  • 其他创建

创建一个值都是0的数组

对于Series,其实我们可以认为它是一个长度固定且有序的字典,因为它的索引和数据是按位置进行匹配的,像我们会使用字典的上下文,就肯定也会使用Series

缺失数据处理

  • dropna() # 过滤掉值为NaN的行
  • fillna() # 填充缺失数据
  • isnull() # 返回布尔数组,缺失值对应为True
  • notnull() # 返回布尔数组,缺失值对应为False

缺失值数据

  • 处理方式一: dropna

dropna默认过滤值为NaN的行,不修改原数据,若指定inplace=True,则修改原数据

  • 处理方式二: fillna

fillna可以将NaN修改为数字0(一般修改为0),不修改原数据,若指定inplace=True,则修改原数据

  • 判断缺失值: isnull,notull

Series特性

因为pandas是基于Numpy构建的,所以Series支持ndarray的特性:

  • 从ndarray创建Series:Series(arr)
  • 与标量(数字):sr * 2
  • 两个Series运算
  • 通用函数:np.ads(sr)
  • 布尔值过滤:sr[sr>0]
  • 统计函数:mean()、sum()、cumsum()

支持字典的特性:

  • 从字典创建Series:Series(dic),
  • In运算:'a'in sr、for x in sr
  • 键索引:sr['a'],sr[['a','b','d']]
  • 键切片:sr['a':'c']
  • 其他函数:get('a',default=0)等

索引取值

  • loc属性 # 以标签解释
  • iloc属性 # 以下标解释

Series数据对齐

pandas在运算时,会按索引进行对齐然后计算。如果存在不同的索引,则结果的索引值是NaN。

将两个Series对象相加时将缺失值设为0:

将缺失值设为0,所以最后算出来b索引对应的结果为14

补充: 灵活的算术方法:add,sub,div,mul

DataFrame

DataFrame是一个表格型的数据结构,相当于是一个二维数组,含有一组有序的列。他可以被看做是由Series组成的字典,并且共用一个索引。

创建方式

  • 方式一

产生的DataFrame会自动为Series分配所索引,并且列会按照排序的顺序排列

  • 方式二:

自定义行索引,源于Series的自定义索引

查看数据

常用属性和方法:

  • index 获取行索引
  • columns 获取列索引
  • T 转置
  • columns 获取列索引
  • values 获取值索引
  • describe 获取快速统计

索引和切片

  • DataFrame有行索引和列索引。
  • DataFrame同样可以通过标签和位置两种方法进行索引和切片。

DataFrame使用索引切片:

  • 方法1:两个中括号,先取列再取行。 df['A'][0]
  • 方法2(推荐):使用loc/iloc属性,一个中括号,逗号隔开,先取行再取列。
    • loc属性:解释为标签
    • iloc属性:解释为下标
  • 向DataFrame对象中写入值时只使用方法2
  • 行/列索引部分可以是常规索引、切片、布尔值索引、花式索引任意搭配。(注意:两部分都是花式索引时结果可能与预料的不同)

常见的获取数据方式

  • read_文件后缀  读取数据

  • head 读取指定行数

  • to_文件后缀  保存数据

  • read_html

读取页面中的表格数据

数据分组

在数据分析当中,我们有时需要将数据拆分,然后在每一个特定的组里进行运算,这些操作通常也是数据分析工作中的重要环节。

GroupBY

数据的聚合

聚合是指任何能够从数组产生标量值的数据转换过程。刚才上面的操作会发现使用GroupBy并不会直接得到一个显性的结果,而是一个中间数据,可以通过执行类似mean、count、min等计算得出结果,常见的还有一些:

函数名 描述  
sum 非NA值的和  
median 非NA值的算术中位数  
std、var 无偏(分母为n-1)标准差和方差  
prod 非NA值的积  
first、last 第一个和最后一个非NA值

事件对象处理

时间序列类型

  • 时间戳:特定时刻
  • 固定时期:如2019年1月
  • 时间间隔:起始时间-结束时间

python库:datetime

  • date、time、datetime、timedelta
  • dt.strftime()
  • strptime()

灵活处理事件对象 : dateutil包

  • dateutil.parser.parse()

成组处理时间对象 to_datetime

  • 时间范围对象 date_range

start 开始时间

end 结束时间

periods 时间长度

freq 时间频率,默认为'D',可选H(our),W(eek),B(usiness),S(emi-)M(onth),(min)T(es), S(econd), A(year),…

数据分析 - pandas的更多相关文章

  1. 利用Python进行数据分析——pandas入门

    利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 ...

  2. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  3. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  4. 利用Python进行数据分析-Pandas(第一部分)

    利用Python进行数据分析-Pandas: 在Pandas库中最重要的两个数据类型,分别是Series和DataFrame.如下的内容主要围绕这两个方面展开叙述! 在进行数据分析时,我们知道有两个基 ...

  5. 数据分析——pandas

    简介 import pandas as pd # 在数据挖掘前一个数据分析.筛选.清理的多功能工具 ''' pandas 可以读入excel.csv等文件:可以创建Series序列,DataFrame ...

  6. python 数据分析--pandas

    接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析 ...

  7. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

  8. Python数据分析-Pandas(Series与DataFrame)

    Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序 ...

  9. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  10. python之数据分析pandas

    做数据分析的同学大部分入门都是从excel开始的,excel也是微软office系列评价最高的一种工具. 但当数据量超过百万行的时候,excel就无能无力了,python第三方包pandas极大的扩展 ...

随机推荐

  1. [转帖]k8s 基本使用(下)

    k8s 基本使用(下) https://www.jianshu.com/p/116ce601a60f 如果你没有看过上篇的话,推荐阅读完 k8s 基本使用(上)后再阅读本篇内容. kubectl cr ...

  2. sublime text 开发记录贴

    1.展示信息有两种: self.view.show_popup('hello'), 这个好看点. sublime.status_message('ssss')    sublime.error_mes ...

  3. 使用Kafka Connect创建测试数据生成器

    在最近的一些项目中,我使用Apache Kafka开发了一些数据管道.在性能测试方面,数据生成总是会在整个活动中引入一些样板代码,例如创建客户端实例,编写控制流以发送数据,根据业务逻辑随机化有效负载等 ...

  4. .net core mvc启动顺序以及主要部件4-MVC

    前面三章已经把MVC启动过程以及源代码做了讲解,本章开始正式MVC,mvc全称叫model view controller,也就是把表现层又细分三层,官网的图片描述: 默认创建了一个.net core ...

  5. 解决Spring Boot 从1.x升级到 2.x 后 单点登陆(SSO)问题

    解决Spring Boot 从1.x升级到 2.x 后 单点登陆(SSO)问题   在学习Spring Cloud 时,遇到了授权服务oauth 相关内容时,总是一知半解,因此决定先把Spring S ...

  6. vue--设置cookie

    Vue-CLI项目-vue-cookie与vue-cookies处理cookie vue-cookie 一.模块的安装 npm install vue-cookie --save #--save可以不 ...

  7. js中 !==和 !=的区别是什么

    1.比较结果上的区别 !=返回同类型值比较结果. !== 不同类型不比较,且无结果,同类型才比较. 2.比较过程上的区别 != 比较时,若类型不同,会偿试转换类型. !== 只有相同类型才会比较. 3 ...

  8. JavaScript数据类型和语法

    第一章 类型 1.2 内置类型 使用 typeof 检测对象类型并不是非常安全的行为: // 安全的 typeof undefined // 'undefined' typeof true // 'b ...

  9. idea注释类,方法

    1.添加类注释:file-settings-file and code Templates-Class #if (${PACKAGE_NAME} && ${PACKAGE_NAME} ...

  10. GitPython模块

    GitPython模块 安装: pip3 install gitpython Gitpython 操作 import os from git.repo import Repo import json ...