https://blog.csdn.net/happyhorizion/article/details/77894035

初接触python觉得及其友好(类似matlab),尤其是一些令人拍案叫绝不可思议的简单命令就可以完成非常复杂的计算,但是真正接触一下就发现,python比matlab有很多不一样的特性。

首先python的工具包(类似于C的库函数)非常多,很多功能都有重复,所以选好包很重要,最简单的选择方法就是用时下最流行的包,社区比较活跃,遇到问题网上一搜很多答案,而且更新和维护也比较好。

在数值计算中常用的包就是numpy,pandas,scipy以及绘图用的matplotlib。

numpy

numpy的优势是矩阵运算,最大的特点是引入了ndarray-多维数组的概念。在ndarray中,每个[]就代表1维。这里和matlab或者C++或者fortran都很不一样,没有行优先或者列优先的概念。但是numpy还有一个数据结构是mat。个人觉得是为了便于使用以上语言的人们使用的。例如mat结构可以非常方便地做转置(matName.T),求逆(matName.I),求伴随矩阵(matName.A)

pandas

pandas的Series数据结构对象:类似于numpy的ndarray。

pd.Series(data),data可以是numpy的array或者python的列表都可以

obj=pd.Series([4,7,-5,3])

obj.index   返回obj的索引

obj.values  返回obj的数据

如果在初始化的时候没有指定索引,默认索引是从0开始到N-1的整数,也可以在初始化的时候就指定索引

obj2=pd.Series([1,2,3],index=['a','b','c']) 这里index=后面是['a','b','c'],也可以是别的列表对象

Series对象的index还可以单独赋值,例如obj2的index还可以这样赋值:

obj2.index2=[....]

obj2['a']利用索引访问数据

字典结构是python的数据结构,pandas中的类似数据结构成为数据框架(DataFrame)

可以把python字典类型的数据直接给Series对象,pandas会自动将key转换为index,data还是data

sdata={'a':1, 'b':2}

obj3=Series(sdata)

判断是否是空pd.isnull(Series对象) 或者是 pd.notnull(Series对象)

Series对象也有判断数据是否是空的函数.isnull()

Series对象也可以有一些基本的算数运算,例如obj+obj2. 在具体执行时,对先比对index,对相同index的数据相加,如果obj有某个index而obj1没有,则数据为NaN

DataFrame的初始化

对于python的字典结构数据对象,可以直接创建pandas的DataFrame对象,例如:

data={'name':['Sara', 'Ben'],

'Age':[23,34]}

frame=pd.DataFrame(data)

得到一个column分别为name和age,index是0,1的DataFrame。DataFrame就是按照column和index组织起来的数据集合,类似于excel表格,也类似于基本的database结构。

column1   column2   column3

index1        data11      data12       data13

index2       data21      data22      data23

index3       data31      data32      data33

frame1=pd.DataFrame(data,column=[],index=[])

frame1.column  返回column列表,是index类型

要访问frame1中的某一列数据,可以用frame1['column_name']或者frame1.column_name,这两种方式都可以。

行元素的获取,可以用:frame.ix[index_name]

每列的数据都可以单独赋值: frame.column_name=[....]

容易混淆/出错的地方:

生成0-N数列的函数:在python中是range(N+1),但是在numpy中是arange(N+1)

数组切片:

numpy的零矩阵 np.zeros((3,3))  3维零矩阵,对于矩阵,形参必须是带括号()的,即tuple类型

改变多维数组维数 np.reshape((dim1,dim2)) 必须是()的tuple类型

--------------------- 本文来自 lxy_Alex 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/happyhorizion/article/details/77894035?utm_source=copy

python及numpy,pandas易混淆的点的更多相关文章

  1. 【python】numpy pandas 特性(随时更新)

    [value map] 用df.replace(dict)可以解决.但是如果dict太大,会非常非常慢. [array相加的维度规律][广播] (2,3) 能和 (3,) 相加,不能和(2,)相加 ( ...

  2. Python安装numpy,pandas慢,超时报错,下载不了的解决方法

    由于python的默认源是国外的,所以下载的时候会很慢,甚至会出现超时下载失败,提供两个解决方法 1.设置pip的超时限制 打开cmd 输入pip --default-timeout=100 inst ...

  3. Python之numpy,pandas实践

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言. Jupyter Notebook 的本质是一个 Web 应用程序,便 ...

  4. 统计学(检验、分布)的 python(numpy/pandas/scipy) 实现

    scipy 中统计相关的 api:https://docs.scipy.org/doc/scipy/reference/stats.html https://zhuanlan.zhihu.com/p/ ...

  5. 有关python numpy pandas scipy 等 能在YARN集群上 运行PySpark

    有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Applicat ...

  6. Python: NumPy, Pandas学习资料

    NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy ...

  7. 第一章:AI人工智能 の 数据预处理编程实战 Numpy, Pandas, Matplotlib, Scikit-Learn

    本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 ...

  8. python 数据分析工具之 numpy pandas matplotlib

    作为一个网络技术人员,机器学习是一种很有必要学习的技术,在这个数据爆炸的时代更是如此. python做数据分析,最常用以下几个库 numpy pandas matplotlib 一.Numpy库 为了 ...

  9. python安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...

随机推荐

  1. UVA 1371 - Period(DP)

    题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&category=&problem=4117&mo ...

  2. QHeaderView的点击和双击事件

    QTablewidget的horizontalHeader() 和 verticalHeader() 得到的表头:QHeaderView 点击事件的触发函数: sectionClicked(int) ...

  3. ajax basic 认证

    //需要Base64见:http://www.webtoolkit.info/javascript-base64.html function make_base_auth(user, password ...

  4. 第四章 Spring.Net 如何管理您的类___让对象了解自己的容器

    我们在开发中,经常需要让对象了解自己所在的容器的信息,例如,有时我们需要让对象知道,对象所在容器的引用是什么,或者是对象在容器中的名称是什么 .Spring.Net 中提供了两个接口,我们使用这两个接 ...

  5. 第四章 Spring.Net 如何管理您的类___对象的作用域

    Spring.Net 中对象的作用域,就是描述对象的部署模式 ,Spring.Net 中对象可以通过两种模式布署: ① singleton(单例模式) ② 非singleton 也叫非单例模式(或者叫 ...

  6. [BestCoder Round #5] hdu 4956 Poor Hanamichi (数学题)

    Poor Hanamichi Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  7. Ubuntu12.04 Skype4.2 提示Skype can't connect,安装Skype4.3

    最近几天Skype突然不能登录啦,以为是自己密码记错啦,重置啦一下密码,发现仍然提示”Skype can't connect“,我的版本是Ubuntu12.04 Skype4.2 尝试啦很多办法仍然不 ...

  8. 【RF库Collections测试】Dictionaries Should Be Equal

    Name:Dictionaries Should Be EqualSource:Collections <test library>Arguments:[ dict1 | dict2 | ...

  9. Windows版Nginx启动失败之1113: No mapping for the Unicode character exists in the target multi-byte code page

    Windows版Nginx启动一闪,进程中未发现nginx进程,查看nginx日志,提示错误为1113: No mapping for the Unicode character exists in ...

  10. 系统启动日志:/var/log/boot.log

    /var/log/boot.log — 记录系统启动时的日志信息,如果系统启动之后有什么异常可以查看该文件信息 [root@localhost ~]# cat /var/log/boot.log # ...