P4754 True Vegetable

题目描述

小A现在有N道题,编号为1,2,⋯,N。每道题的起始毒瘤程度为0或1。在每天,小A可以将编号连续的K道题的毒瘤程度+1。但小B因为本身比较菜,不是很愿意小A出毒瘤题,所以在\(w_i\)天开始时可以向第\(x_i\)题传播\(v_i\)​点的菜气,使得第\(x_i\)的毒瘤程度减少\(v_i\)​点(减后可以为负)。这里我们假定菜是有限的,在释放了\(v_i\)点的菜气后,小B需要至少$ r_{v_i}$个回合不能释放菜气。现在小A知道了小B释放菜气的计划,他想知道他至少需要多少个回合可以使得每道题的毒瘤程度至少为1。

输入输出格式

输入格式:

第一行输入四个整数,N,M,K,L,分别为题目的数量,小B的操作数量,每次连续增加毒瘤程度题目的数量和释放菜气的最大值。

第二行输入N个整数\(a_1,a_2,\cdots,a_N\),分别为N个题目的毒瘤程度。

第三行输入L个整数\(r_1,r_2,\cdots,r_L\),分别为释放1到L点菜气的冷却回合数。

接下来有M行,每行输入三个整数\(w_i,x_i,v_i\),表示小B在第\(w_i\)次回合开始时向第\(x_i\)题释放了\(v_i\)点的菜气。保证\(\{w_i\}\)为递增序列。

输出格式:

请输出小A将每道题的毒瘤程度加到至少为1最少需要的回合数。

说明

\(1≤N,M≤5×10^5\)

\(1 \le K \le N\)

\(1 \le L \le 100\)

\(a[i] \in \{0,1\}\)

\(1 = r_1 < r_2 < \cdots < r_L \le 2 \times L\)

\(1 \le w_i \le N+L\)

\(w_i+r_{v_i} \le w_{i+1}\)

\(1 \le x_i \le N\)

\(1 \le v_i \le L\)


我做的第一道的一道二分答案+贪心的题是一个叫丢瓶盖的,其实和这个题差不多。

但是这个题明显坑很多。。

月赛的时候,我们机房一直在吵关于B的决策的问题,从期望争到博弈。

然而第二天早上

我们发现了\(w_i+r_{v_i} \le w_{i+1}\)

要你这冷却时间有何用???

冷静下来以后发现真的有用,只是读入后不需要处理而已。

因为还有一条\(1 = r_1 < r_2 < \cdots < r_L \le 2 \times L\),这个保证了二分的正确性。

我们二分B做到哪一个计划了,由于以上一个条件,我们可以确定如果B这个计划时A目的达成了,在之后A的计划一定可以达成,而如果这时A的计划没有达成,那么之前也没法达成。

在二分检查的时候,先让B把招数放了,然后我们对A的题目编号从小到大扫描,如果当前毒瘤值小于1,花时间给它加上,用一个外部的差分数组维护偏移量。

每次的总时间为B下一个招数的时间-1


Code:

#include <cstdio>
#include <cstring>
const int N=500010;
int min(int x,int y){return x<y?x:y;}
int n,m,k,L,ans;
//题目的数量,小B的操作,每次连续增加毒瘤程度题目的数量和释放菜气的最大值
int s[N],tmp[N];//毒瘤值
int d[N],add;//外界差分数组
int w[N],x[N],v[N];//w天对x题放了v的菜气
bool check(int c)
{
memset(d,0,sizeof(d));
add=0;
for(int i=1;i<=n;i++)
tmp[i]=s[i];
for(int i=1;i<=c;i++)
tmp[x[i]]-=v[i];
int cnt=w[c+1]-1;
for(int i=1;i<=n;i++)
{
add+=d[i];
tmp[i]+=add;
if(tmp[i]<1)
{
add+=1-tmp[i];
d[min(i+k,n+1)]-=1-tmp[i];
cnt-=1-tmp[i];
if(cnt<0) return false;
}
}
ans=w[c+1]-1-cnt;
return true;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&L);
for(int i=1;i<=n;i++)
scanf("%d",s+i);
for(int i=1;i<=L;i++)
scanf("%d",s);
for(int i=1;i<=m;i++)
scanf("%d%d%d",w+i,x+i,v+i);
w[m+1]=w[m]+N;
int l=0,r=m;
while(l<r)
{
int mid=l+r>>1;
if(check(mid))
r=mid;
else
l=mid+1;
}
check(l);
printf("%d\n",ans);
return 0;
}

2018.7.15

洛谷 P4754 True Vegetable 解题报告的更多相关文章

  1. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  2. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  3. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  4. 洛谷 P2725 邮票 Stamps 解题报告

    P2725 邮票 Stamps 题目背景 给一组 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K -- 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资. 题目描 ...

  5. 洛谷 P3853 路标设置 解题报告

    P3853 路标设置 题目背景 B市和T市之间有一条长长的高速公路,这条公路的某些地方设有路标,但是大家都感觉路标设得太少了,相邻两个路标之间往往隔着相当长的一段距离.为了便于研究这个问题,我们把公路 ...

  6. 洛谷 P1054 等价表达式 解题报告

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  7. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  8. 洛谷 P4171 [JSOI2010]满汉全席 解题报告

    P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. 基于Spring的最简单的定时任务实现与配置(三)--番外篇 cron表达式的相关内容

    本来这篇文章是会跟本系列的前两篇文章一起发布的.但是,昨天在找资料总结的时候遇到了一点意外,就延后了一些. 本篇的内容主要参考了 这篇博文:http://www.cnblogs.com/junrong ...

  2. APP端测试,常见功能测试点汇总

    除去每个产品和版本不同的业务需求以及功能,针对于大多数的APP的共同点和移动设备的特性,本文总结了一些APP功能测试中经常遇见,需要考虑到的测试点以共参考 一.安装和卸载 应用的安装和卸载在任何一款A ...

  3. Python的sys.argv使用说明

    刚开始使用这个参数的时候,很不明白其含义.网上搜索很多都是贴的官网上面的一则实例,说看懂,就明白.可是,我看不懂.现在在回头看这个参数使用,并不是很麻烦. 举几个小例子就明白了. 创建一个脚本,内容如 ...

  4. 手动配置网卡配置文件ifcfg-eth0

    linux 其他知识目录 原文链接:https://www.cnblogs.com/arvintang/p/5990599.html 网络接口配置文件[root@localhost ~]# cat / ...

  5. 第三次ScrumMeeting博客

    第三次ScrumMeeting博客 本次会议于10月27日(五)22时整在3公寓725房间召开,持续10分钟. 与会人员:刘畅.方科栋.窦鑫泽.张安澜. 1. 每个人的工作(有Issue的内容和链接) ...

  6. USACO 1.2.3 Name That Number 命名那个数字(打开文件)

    Description 在威斯康辛州牛大农场经营者之中,都习惯于请会计部门用连续数字给母牛打上烙印.但是,母牛用手机时并没感到这个系统的便利,它们更喜欢用它们喜欢的名字来呼叫它们的同伴,而不是用像这个 ...

  7. MySQL的课堂的实践

    MySQL的课堂的实践 基本认识 如今的数据库有几种是主流,分别是:Oracle Database.Informix.SQL Server.PostgreSQL.MySQL等,我们现在学习的MySQL ...

  8. int 和 Integer的区别

    int是基本类型,默认值为0,int a=5;a只能用来计算,一般作为数值参数. Integer是引用类型,默认值为null, Integer b=5;b是一个对象,它可以有很多方法,一般做数值转换, ...

  9. c# 画image

    这是一个例子,从数据库中读取然后赋伪彩,生成bitmap,给到imagebox控件(其image属性为平铺). https://pan.baidu.com/s/1hf_fGFHjGoDK_gywuhg ...

  10. Nginx 使用札记

    nginx是什么? nginx是俄罗斯人 Igor Sysoev为俄罗斯访问量第二的Rambler.ru站点开发的一个十分轻量级的HTTP服务器.它是一个高性能的HTTP和反向代理服务器,同时也可以作 ...