BZOJ4951 Wf2017Money for Nothing(决策单调性)
按时间排序,显然可能存在于答案中的公司价格应该单调递减。然后就可以大胆猜想感性证明其有决策单调性。具体地,设f(i,j)表示第i个消费公司和第j个生产公司搭配的获利,f(i,j)=(ti-tj)*(ci-cj),即证若f(i,j)>f(i,k) (k<j),则f(i+1,j)>f(i+1,k)。(ti-tj)*(ci-cj)>(ti-tk)*(ci-ck)→tjcj-ticj-tjci>tkck-tick-tkci→tjcj-tkck>ti(cj-ck)+ci(tj-tk) (cj<ck,tj>tk),又由ti+1>ti,ci+1<ci,得tjcj-tkck>ti+1(cj-ck)+ci+1(tj-tk),再倒推回去即得原式。由上面的推导可以发现显然不会存在于答案中的公司仍会对决策单调性产生影响,开始时得去掉。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 500010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,L[N],R[N],id[N],top;
ll ans;
struct data{int x,y;
}a[N],b[N],c[N];
bool cmp(const data&a,const data&b)
{
return a.x<b.x;
}
ll calc(int x,int y){if (b[y].x<a[x].x) return ;return 1ll*(b[y].x-a[x].x)*(b[y].y-a[x].y);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4951.in","r",stdin);
freopen("bzoj4951.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i].y=read(),a[i].x=read();
for (int i=;i<=m;i++) b[i].y=read(),b[i].x=read();
sort(a+,a+n+,cmp),sort(b+,b+m+,cmp);
int t=,mn=;
for (int i=;i<=n;i++) if (a[i].y<mn) c[++t]=a[i],mn=a[i].y;
n=t;for (int i=;i<=n;i++) a[i]=c[i];
t=;int mx=;
for (int i=m;i>=;i--) if (b[i].y>mx) c[++t]=b[i],mx=b[i].y;
m=t;for (int i=;i<=m;i++) b[i]=c[i];reverse(b+,b+m+);
for (int i=;i<=n;i++)
{
while (top&&calc(i,L[top])>calc(id[top],L[top])) top--;
int l=L[top],r=R[top],x=R[top]+;
while (l<=r)
{
int mid=l+r>>;
if (calc(i,mid)>calc(id[top],mid)) x=mid,r=mid-;
else l=mid+;
}
R[top]=x-;
if (x<=m) top++,id[top]=i,L[top]=x,R[top]=m;
}
for (int i=;i<=top;i++)
for (int j=L[i];j<=R[i];j++)
ans=max(ans,calc(id[i],j));
cout<<ans;
return ;
}
BZOJ4951 Wf2017Money for Nothing(决策单调性)的更多相关文章
- 4951: [Wf2017]Money for Nothing 决策单调性 分治
Bzoj4951:决策单调性 分治 国际惯例题面:一句话题面:供应商出货日期为Ei,售价为Pi:用户收购截止日期为Si,收购价格为Gi.我们要求max((Si-Ej)*(Gi-Pj)).显然如果我们把 ...
- SDOI 2016 征途 决策单调性
题目大意:有一个数列,将其分成m段,求最小方差 先弄出n^3的dp,打出决策点,然后发现决策点是单调递增的,决策单调性搞一搞就可以了 #include<bits/stdc++.h> #de ...
- BZOJ2739 最远点(分治 + 决策单调性)
2739: 最远点 Time Limit: 20 Sec Memory Limit: 256 MB Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据 ...
- [NOI2009]诗人小G(dp + 决策单调性优化)
题意 有一个长度为 \(n\) 的序列 \(A\) 和常数 \(L, P\) ,你需要将它分成若干段,每 \(P\) 一段的代价为 \(| \sum ( A_i ) − L|^P\) ,求最小代价的划 ...
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...
- BZOJ5311 贞鱼(动态规划+wqs二分+决策单调性)
大胆猜想答案随k变化是凸函数,且有决策单调性即可.去粘了份fread快读板子才过. #include<iostream> #include<cstdio> #include&l ...
随机推荐
- Qt QStringLiteral
zz 解释QStringLiteral 原文发表于woboq网站 QStringLiteral explained 转载 原作者: Olivier Goffart 译者:zzjin QStringL ...
- CF 1083 A. The Fair Nut and the Best Path
A. The Fair Nut and the Best Path https://codeforces.com/contest/1083/problem/A 题意: 在一棵树内找一条路径,使得从起点 ...
- MSP430的JTAG接口和BSW接口
1.JTAG口,JTAG引脚如下定义: 单片机TCK——测试时钟输入,接仿真器7脚 单片机TDI——测试数据输入,接仿真器2脚 单片机TDO——测试数据输出,接仿真器1脚 单片机TMS——测试 ...
- DB知识点记录
DB知识点记录 分页 SqlServer:ROW_NUMBER () over (ORDER BY ID) AS RN, MySql:limit Oracle:ROWNUM AS RN 数据表的基本结 ...
- JS基础,课堂作业,成绩练习
成绩练习 <script> var name = prompt("请输入学生姓名:"); var degree = parseInt(prompt("请输入学 ...
- [转]WIN2008 IIS7的日期格式
最近项目升级服务器从32位升级到64位的WIN2008,日期显示格式非我们所期望的yyyy-M-d格式,原以为修改控制面板的日期格式即可,可是不行. 修改注册表问题解决. 修改方法: 运行注册表编辑器 ...
- python基础-02-while格式化逻辑运算
python其他知识目录 1.循环打印“我是小马过河” while True: print('我是小马过河') #4.用while从一打印到10 #5.请通过循环,1 2 3 4 5 6 8 9 ...
- CSS Grid布局指南
简介 CSS Grid布局 (又名"网格"),是一个基于二维网格布局的系统,主要目的是改变我们基于网格设计的用户接口方式.如我们所知,CSS 总是用于网页的样式设置,但它并没有起到 ...
- <力荐>非常好的正则表达式的详解<力荐>
正则表达式(regular expression)描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串.将匹配的子串做替换或者从某个串中取出符合某个条件的子串等. 列目录时, dir *.t ...
- Minimum Sum of Array(map迭代器)
You are given an array a consisting of n integers a1, ..., an. In one operation, you can choose 2 el ...