就是板题。。

查询子矩阵中最大的元素。。。然后看看是不是四个角落的  是就是yes  不是就是no  判断一下就好了

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int n, m;
int dp[maxn][maxn][][], a[maxn][maxn]; int rmq(int x1, int y1, int x2, int y2)
{ int kx = , ky = ;
while (( << ( + kx)) <= x2 - x1 + ) kx++;
while (( << ( + ky)) <= y2 - y1 + ) ky++;
int m1 = dp[x1][y1][kx][ky];
int m2 = dp[x2 - ( << kx) + ][y1][kx][ky];
int m3 = dp[x1][y2 - ( << ky) + ][kx][ky];
int m4 = dp[x2 - ( << kx) + ][y2 - ( << ky) + ][kx][ky]; return max(max(m1, m2), max(m3, m4)); } int main()
{
while(cin>> n >> m)
{
rap(i, , n)
rap(j, , m)
{
scanf("%d", &a[i][j]);
dp[i][j][][] = a[i][j];
}
for (int i = ; ( << i) <= n; i++) {
for (int j = ; ( << j) <= m; j++) {
if (i == && j == ) continue;
for (int row = ; row + ( << i) - <= n; row++)
for (int col = ; col + ( << j) - <= m; col++) {
//当x或y等于0的时候,就相当于一维的RMQ了
//if(i == 0) dp[row][col][i][j] = max(dp[row][col][i][j - 1], dp[row][col + (1 << (j - 1))][i][j - 1]);
if (j == ) dp[row][col][i][j] = max(dp[row][col][i - ][j], dp[row + ( << (i - ))][col][i - ][j]);
else dp[row][col][i][j] = max(dp[row][col][i][j - ], dp[row][col + ( << (j - ))][i][j - ]);
}
}
}
int q;
scanf("%d", &q);
while(q--)
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
int h = rmq(x1, y1, x2, y2);
int flag = ;
if(a[x1][y1] == h || a[x2][y2] == h || a[x1][y2] == h || a[x2][y1] == h)
flag = ;
printf("%d %s\n", h, flag?"yes":"no");
}
} return ;
}

Check Corners HDU - 2888(二维RMQ)的更多相关文章

  1. 【HDOJ 2888】Check Corners(裸二维RMQ)

    Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...

  2. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  3. hdu 2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  5. HDU 2888:Check Corners(二维RMQ)

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...

  6. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

  7. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  8. 二维RMQ hdu 2888

    题目:点这里 题意:给出一个n*m的矩阵,然后又Q个询问:每个询问有x1,y1,x2,y2,x1,y1为子矩阵的左上角坐标,x2,y2为右上角的坐标.求此子矩阵中元素最大值,判断最大值是否在子矩阵四个 ...

  9. hdu2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

随机推荐

  1. Session丢失——解决方案

    先抄下别人的作业(原帖:http://www.cnblogs.com/zhc088/archive/2011/07/24/2115497.html) Session丢失已经是一种习以为常的问题了,在自 ...

  2. 每周开源项目分享-年轻人的第一个OAuth2.0 Server:hydra

    年轻人的第一个OAuth2.0 Server:hydra hydra 是什么呢? OpenID Connect certified OAuth2 Server - cloud native, secu ...

  3. Drupal8 新建第一个模块

    参考: https://www.drupal.org/developing/modules/8 https://www.drupal.org/node/1915030 https://www.drup ...

  4. 利用存储过程生成大量的数据(oracle,mysql)

    在进行查询操作的性能测试时,往往需要测试大数据量模式下的查询功能的性能,这是就需要我们去创造一些测试数据来填充数据库,来模拟真是环境,造数据的方式有很多种,可以使用loadrunner,jmeter等 ...

  5. 利用 Python 分析微信好友性别和位置

    今天用到一个非常有意思的库——itchat,它已经完成了 wechat 的个人账号API接口,使爬取个人微信信息更加方便.  下载 爬取微信好友信息 这样就将你所有微信好友的信息都返回了,我们并不需要 ...

  6. 假回溯-uva140带宽

    题目链接:https://vjudge.net/problem/UVA-140 题解:这道题利用全排函数即可解决,但是这道题技巧性强,稍微不注意就会超时,一开始没有想起全排函数,自己写回溯全排超时了, ...

  7. Ansible开发之路

    一.初识Ansible 链接:https://www.cnblogs.com/baishuchao/articles/9164083.html 二.Ansible的架构 链接:https://www. ...

  8. 高可用Kubernetes集群-3. etcd高可用集群

    五.部署高可用etcd集群 etcd是key-value存储(同zookeeper),在整个kubernetes集群中处于中心数据库地位,以集群的方式部署,可有效避免单点故障. 这里采用静态配置的方式 ...

  9. Linux内核学习笔记(1)-- 进程管理概述

    一.进程与线程 进程是处于执行期的程序,但是并不仅仅局限于一段可执行程序代码.通常,进程还要包含其他资源,像打开的文件,挂起的信号,内核内部数据,处理器状态,一个或多个具有内存映射的内存地址空间及一个 ...

  10. JSON.stringify处理对象时的问题

    1. JSON.stringify({entry_key: 'test', entry_detail: undefined}) 结果 为 "{"entry_key": & ...