【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述
给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色。对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值。要求黑色的叶子节点数目不超过 $m$ ,求最大总贡献值。
$n\le 10$
输入
第一行两个数 n;m。接下来 2^(n-1) 行,每行n-1 个数,第 i 行表示编号为 2^(n-1)-1+ i 的平民对其n-1直系上司的作战贡献度,其中第一个数表示对第一级直系上司,即编号为 (2^(n-1)-1+ i)/2 的贵族的作战贡献度 wij,依次往上。接下来 2^(n-1)行,每行n-1个数,第i行表示编号为 2^(n-1)-1+ i的平民对其n-1个直系上司的后勤贡献度,其中第一个数表示对第一级直系上司,即编号为 (2^(n-1)-1+ i)/2 的贵族的后勤贡献度 fij ,依次往上。
输出
一行一个数表示满足条件的最大贡献值
样例输入
3 4
503 1082
1271 369
303 1135
749 1289
100 54
837 826
947 699
216 389
样例输出
6701
题解
暴力+树形背包dp
[NOI2006]网络收费 的套路。
提前计算叶子节点的总贡献,设 $f[i][j]$ 表示以 $i$ 为根的子树中,$j$ 个叶子节点的颜色为黑色( $j$ 个平民选择战争)的最大总贡献值。
那么这显然是一个树形背包问题,处理左右节点后背包合并即可。
但是由于叶子节点的贡献与其祖先节点的颜色选择有关,我们不能直接得到贡献。由于这是一棵完全二叉树,因此可以暴力枚举每个非叶子节点的颜色。
这样有递归式 $T(1)=O(\log k),T(k)=4T(\frac k2)+O(k^2)$ ,不考虑 $T(1)$ 时根据主定理解得 $T(k)=O(k^2\log k)$ ,考虑 $T(1)$ 时 $T(1)$ 被计算了 $k^2$ 次,贡献为 $O(k^2\log k)$ 。
因此总的时间复杂度是正确的,为 $O(2^{2n}·n)$ 。
#include <cstdio>
#include <algorithm>
#define N 1030
using namespace std;
int n , w[N][12] , v[N][12] , f[N][N] , p[12];
void dfs(int x , int d)
{
int i , j;
for(i = 0 ; i <= 1 << d ; i ++ ) f[x][i] = 0;
if(!d)
{
for(i = 1 ; i <= n ; i ++ )
{
if(p[i]) f[x][1] += w[x][i];
else f[x][0] += v[x][i];
}
return;
}
p[d] = 0 , dfs(x << 1 , d - 1) , dfs(x << 1 | 1 , d - 1);
for(i = 0 ; i <= 1 << (d - 1) ; i ++ )
for(j = 0 ; j <= 1 << (d - 1) ; j ++ )
f[x][i + j] = max(f[x][i + j] , f[x << 1][i] + f[x << 1 | 1][j]);
p[d] = 1 , dfs(x << 1 , d - 1) , dfs(x << 1 | 1 , d - 1);
for(i = 0 ; i <= 1 << (d - 1) ; i ++ )
for(j = 0 ; j <= 1 << (d - 1) ; j ++ )
f[x][i + j] = max(f[x][i + j] , f[x << 1][i] + f[x << 1 | 1][j]);
}
int main()
{
int m , i , j , ans = 0;
scanf("%d%d" , &n , &m) , n -- ;
for(i = 0 ; i < (1 << n) ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &w[i + (1 << n)][j]);
for(i = 0 ; i < (1 << n) ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &v[i + (1 << n)][j]);
dfs(1 , n);
for(i = 0 ; i <= m ; i ++ ) ans = max(ans , f[1][i]);
printf("%d\n" , ans);
return 0;
}
【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp的更多相关文章
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp
题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- 【BZOJ4007】[JLOI2015]战争调度(动态规划)
[BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- 【bzoj4987】Tree 树形背包dp
题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...
- 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...
随机推荐
- Burpsuite神器常用功能使用方法总结
Burpsuite介绍: 一款可以进行再WEB应用程序的集成攻击测试平台. 常用的功能: 抓包.重放.爆破 1.使用Burp进行抓包 这边抓包,推荐360浏览器7.1版本(原因:方便) 在浏览器设置代 ...
- 20155336 2016-2017-2《JAVA程序设计》第一周学习总结
# 20155336 2016-2017-2<JAVA程序设计>第1周学习总结 ## 教材学习内容总结 开学的第一周,带着些许的欣喜和好奇,听完了老师的第一堂课.说心里话学习JAVA仿佛 ...
- apt-get 0%
错误如下: www.2cto.com 使用apt-get命令安装软件时出现“0%[正在等待报头]“的提示且无法继续安装,一般出现此问题是因为安装过程中Ctrl+C强行中断或其它原因导致上 ...
- wmware 10 升级到11后,macos不能运行的问题
解决方案: 1.由于wmware升级,原来的unlocker已不能使用. 所以得升级unlocker版本,目前支持wmware11的最新版本是2.0.4 http://www.insanelymac. ...
- sql语句-8-sql学习流程
- oracle基础命令
oracle使用步骤: 一.oracle安装 两个文件解压到同一文件夹,doc为说明/使用文档 二.oracle启动: 1.启动oracle:启动监听和自定义库 2.启动cmd->sqlplus ...
- .Net FrameWork常用类
System类 System.Environment类: 提供有关当前环境和平台的信息以及操作它们的方法. System.Console类 :表示控制台应用程序的标准输入流.输出流和错误流. ...
- C#反射的简单示例
反射(Reflection)可以在运行时获 得.NET中每一个类型(包括类.结构.委托.接口和枚举等)的成员,包括方法.属性.事件,以及构造函数等.还可以获得每个成员的名称.限定符和参数等反正说白了就 ...
- tomcat 设定自定义图片路径
1.问题 平常图片路径都是在项目目录下存放,都是ip地址+端口号+项目名+图片路径,因为项目需要要把图片从tomcat中分离出来,并且设置可以通过自定义地址访问自定义图片路径. 2.解决 在 tomc ...
- Unity Lighting - Choosing a Color Space 选择色彩空间(四)
Choosing a Color Space 选择色彩空间 In addition to selecting a rendering path, it’s important to choose ...