题目描述

给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色。对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值。要求黑色的叶子节点数目不超过 $m$ ,求最大总贡献值。

$n\le 10$

输入

第一行两个数 n;m。接下来 2^(n-1) 行,每行n-1 个数,第 i 行表示编号为 2^(n-1)-1+ i 的平民对其n-1直系上司的作战贡献度,其中第一个数表示对第一级直系上司,即编号为 (2^(n-1)-1+ i)/2 的贵族的作战贡献度 wij,依次往上。接下来 2^(n-1)行,每行n-1个数,第i行表示编号为 2^(n-1)-1+ i的平民对其n-1个直系上司的后勤贡献度,其中第一个数表示对第一级直系上司,即编号为 (2^(n-1)-1+ i)/2 的贵族的后勤贡献度 fij ,依次往上。

输出

一行一个数表示满足条件的最大贡献值

样例输入

3 4
503 1082
1271 369
303 1135
749 1289
100 54
837 826
947 699
216 389

样例输出

6701


题解

暴力+树形背包dp

[NOI2006]网络收费 的套路。

提前计算叶子节点的总贡献,设 $f[i][j]$ 表示以 $i$ 为根的子树中,$j$ 个叶子节点的颜色为黑色( $j$ 个平民选择战争)的最大总贡献值。

那么这显然是一个树形背包问题,处理左右节点后背包合并即可。

但是由于叶子节点的贡献与其祖先节点的颜色选择有关,我们不能直接得到贡献。由于这是一棵完全二叉树,因此可以暴力枚举每个非叶子节点的颜色。

这样有递归式 $T(1)=O(\log k),T(k)=4T(\frac k2)+O(k^2)$ ,不考虑 $T(1)$ 时根据主定理解得 $T(k)=O(k^2\log k)$ ,考虑 $T(1)$ 时 $T(1)$ 被计算了 $k^2$ 次,贡献为 $O(k^2\log k)$ 。

因此总的时间复杂度是正确的,为 $O(2^{2n}·n)$ 。

#include <cstdio>
#include <algorithm>
#define N 1030
using namespace std;
int n , w[N][12] , v[N][12] , f[N][N] , p[12];
void dfs(int x , int d)
{
int i , j;
for(i = 0 ; i <= 1 << d ; i ++ ) f[x][i] = 0;
if(!d)
{
for(i = 1 ; i <= n ; i ++ )
{
if(p[i]) f[x][1] += w[x][i];
else f[x][0] += v[x][i];
}
return;
}
p[d] = 0 , dfs(x << 1 , d - 1) , dfs(x << 1 | 1 , d - 1);
for(i = 0 ; i <= 1 << (d - 1) ; i ++ )
for(j = 0 ; j <= 1 << (d - 1) ; j ++ )
f[x][i + j] = max(f[x][i + j] , f[x << 1][i] + f[x << 1 | 1][j]);
p[d] = 1 , dfs(x << 1 , d - 1) , dfs(x << 1 | 1 , d - 1);
for(i = 0 ; i <= 1 << (d - 1) ; i ++ )
for(j = 0 ; j <= 1 << (d - 1) ; j ++ )
f[x][i + j] = max(f[x][i + j] , f[x << 1][i] + f[x << 1 | 1][j]);
}
int main()
{
int m , i , j , ans = 0;
scanf("%d%d" , &n , &m) , n -- ;
for(i = 0 ; i < (1 << n) ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &w[i + (1 << n)][j]);
for(i = 0 ; i < (1 << n) ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &v[i + (1 << n)][j]);
dfs(1 , n);
for(i = 0 ; i <= m ; i ++ ) ans = max(ans , f[1][i]);
printf("%d\n" , ans);
return 0;
}

【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp的更多相关文章

  1. 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp

    Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...

  2. 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp

    题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...

  3. [BZOJ4007][JLOI2015]战争调度(DP+主定理)

    第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...

  4. BZOJ4007 [JLOI2015]战争调度

    根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...

  5. 【BZOJ4007】[JLOI2015]战争调度(动态规划)

    [BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...

  6. [JLOI2015]战争调度

    [JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...

  7. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  8. 【bzoj4987】Tree 树形背包dp

    题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...

  9. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

随机推荐

  1. 使用cursor递归遍历sqlserver的相应表

    use rc GO )DECLARE cur1 cursor for select [name] from sys.tables where name LIKE 'index_%' drop tabl ...

  2. 深入Redis 主从复制原理

    原文:深入Redis 主从复制原理 1.复制过程 2.数据间的同步 3.全量复制 4.部分复制 5.心跳 6.异步复制 1.复制过程 从节点执行 slaveof 命令. 从节点只是保存了 slaveo ...

  3. 跨域发送HTTP请求详解

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客讲述几种跨域发HTTP请求的几种方法,POST请求,GET请求 目录: 一,采用JsonP的方式(只能 ...

  4. 解决数据库SUSPECT(置疑)状态

    在虚拟机中运行数据库不小心强制关机了,结果有一个重要的数据库后面加上了一个suspect的关键字,在管理器中打不开,程序也不能运行. 网上有很多分析的方法,试了一些不管用,最后用这种方法解决了,记录一 ...

  5. 原生js使用ajax

    AJAX 可以在不重新加载整个页面的情况下,与服务器交换数据并更新部分网页内容(默认是异步) (1)使用ajax会用到XMLHttpRequest()对象 (2)然后使用open方法定义请求方法和请求 ...

  6. Mac下布置appium环境

    1.下载或者更新Homebrew:homebrew官网 macOS 不可或缺的套件管理器 $ /usr/bin/ruby -e "$(curl -fsSL https://raw.githu ...

  7. Unity编辑器扩展 Chapter3--Create Custom Inspector

    一.Create Custom Inspector 重绘inspector面板一方面是我们的挂在脚本的窗口变得友好,另一方面可以让其变得更强大,比如添加一些有效性验证. 二.重要说明 1.Editor ...

  8. IDEA 创建Spring Boot 项目

    一.准备环境 配置Maven,打开设置页面File - Setting,快捷键Ctrl + Alt + S,找到Maven,默认是IDEA 自带的插件,User setting file 配置文件默认 ...

  9. Zookeeper-----Zookeeper概述

    一:Zookeeper的概念? ZooKeeper是一种分布式协调服务,用于管理大型主机.在分布式环境中协调和管理服务是一个复杂的过程.ZooKeeper通过其简单的架构和API解决了这个问题.Zoo ...

  10. Python爬虫:爬取美拍小姐姐视频

    最近在写一个应用,需要收集微博上一些热门的视频,像这些小视频一般都来自秒拍,微拍,美拍和新浪视频,而且没有下载的选项,所以只能动脑想想办法了. 第一步 分析网页源码. 例如:http://video. ...