【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述
给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色。对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值。要求黑色的叶子节点数目不超过 $m$ ,求最大总贡献值。
$n\le 10$
输入
第一行两个数 n;m。接下来 2^(n-1) 行,每行n-1 个数,第 i 行表示编号为 2^(n-1)-1+ i 的平民对其n-1直系上司的作战贡献度,其中第一个数表示对第一级直系上司,即编号为 (2^(n-1)-1+ i)/2 的贵族的作战贡献度 wij,依次往上。接下来 2^(n-1)行,每行n-1个数,第i行表示编号为 2^(n-1)-1+ i的平民对其n-1个直系上司的后勤贡献度,其中第一个数表示对第一级直系上司,即编号为 (2^(n-1)-1+ i)/2 的贵族的后勤贡献度 fij ,依次往上。
输出
一行一个数表示满足条件的最大贡献值
样例输入
3 4
503 1082
1271 369
303 1135
749 1289
100 54
837 826
947 699
216 389
样例输出
6701
题解
暴力+树形背包dp
[NOI2006]网络收费 的套路。
提前计算叶子节点的总贡献,设 $f[i][j]$ 表示以 $i$ 为根的子树中,$j$ 个叶子节点的颜色为黑色( $j$ 个平民选择战争)的最大总贡献值。
那么这显然是一个树形背包问题,处理左右节点后背包合并即可。
但是由于叶子节点的贡献与其祖先节点的颜色选择有关,我们不能直接得到贡献。由于这是一棵完全二叉树,因此可以暴力枚举每个非叶子节点的颜色。
这样有递归式 $T(1)=O(\log k),T(k)=4T(\frac k2)+O(k^2)$ ,不考虑 $T(1)$ 时根据主定理解得 $T(k)=O(k^2\log k)$ ,考虑 $T(1)$ 时 $T(1)$ 被计算了 $k^2$ 次,贡献为 $O(k^2\log k)$ 。
因此总的时间复杂度是正确的,为 $O(2^{2n}·n)$ 。
#include <cstdio>
#include <algorithm>
#define N 1030
using namespace std;
int n , w[N][12] , v[N][12] , f[N][N] , p[12];
void dfs(int x , int d)
{
int i , j;
for(i = 0 ; i <= 1 << d ; i ++ ) f[x][i] = 0;
if(!d)
{
for(i = 1 ; i <= n ; i ++ )
{
if(p[i]) f[x][1] += w[x][i];
else f[x][0] += v[x][i];
}
return;
}
p[d] = 0 , dfs(x << 1 , d - 1) , dfs(x << 1 | 1 , d - 1);
for(i = 0 ; i <= 1 << (d - 1) ; i ++ )
for(j = 0 ; j <= 1 << (d - 1) ; j ++ )
f[x][i + j] = max(f[x][i + j] , f[x << 1][i] + f[x << 1 | 1][j]);
p[d] = 1 , dfs(x << 1 , d - 1) , dfs(x << 1 | 1 , d - 1);
for(i = 0 ; i <= 1 << (d - 1) ; i ++ )
for(j = 0 ; j <= 1 << (d - 1) ; j ++ )
f[x][i + j] = max(f[x][i + j] , f[x << 1][i] + f[x << 1 | 1][j]);
}
int main()
{
int m , i , j , ans = 0;
scanf("%d%d" , &n , &m) , n -- ;
for(i = 0 ; i < (1 << n) ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &w[i + (1 << n)][j]);
for(i = 0 ; i < (1 << n) ; i ++ ) for(j = 1 ; j <= n ; j ++ ) scanf("%d" , &v[i + (1 << n)][j]);
dfs(1 , n);
for(i = 0 ; i <= m ; i ++ ) ans = max(ans , f[1][i]);
printf("%d\n" , ans);
return 0;
}
【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp的更多相关文章
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp
题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...
- [BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了. 重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献. 设k为总结点数,对于 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- 【BZOJ4007】[JLOI2015]战争调度(动态规划)
[BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- 【bzoj4987】Tree 树形背包dp
题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...
- 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...
随机推荐
- 20155334 实验四:Android程序设计
20155334实验四:Android程序设计 实验内容 基于Android Studio开发简单的Android应用并部署测试; 了解Android组件.布局管理器的使用: 掌握Android中事件 ...
- mfc通过MapWinGIS控件读取shp文件(不通过#import实现)
1.首先注册MapWinGIS ActiveX组件, 引入MapWinGIS.ocx产生的MapWinGIS_i.h和MapWinGIS_i.c文件,利用CoCreateInstance函数来调用 演 ...
- sql语句-5-联接组合查询
- 4825: [Hnoi2017]单旋
4825: [Hnoi2017]单旋 链接 分析: 以后采取更保险的方式写代码!!!81行本来以为不特判也可以,然后就总是比答案大1,甚至出现负数,调啊调啊调啊调~~~ 只会旋转最大值和最小值,以最小 ...
- 06004_Redis的启动、使用和停止
1.Redis的启动 (1)前端模式启动 ①直接运行bin/redis-server将以前端模式启动:切换到 /usr/local/redis/bin目录下,然后./redis-server : ②前 ...
- apache开启伪静态的方法 php篇
打开apache的配置文件httpd.conf 找到 #LoadModule rewrite_module modules/mod_rewrite.so 把前面#去掉.没有则添加,但必选独占一行,使a ...
- Python小白学习之如何添加类属性和类方法,修改类私有属性
如何添加类属性和类方法,修改类私有属性 2018-10-26 11:42:24 类属性.定义类方法.类实例化.属性初始化.self参数.类的私有变量的个人学习笔记 直接上实例: class play ...
- 英特尔近日发布最新版实感™ SDK R5 (v7)
英特尔开发人员专区 原文地址 英特尔® 实感™ SDK 的 7.0.23.8048 版本(也称为 R5)现已推出.您将看到的主要变化包括: 支持英特尔® 实感™ SR300 摄像头:应于 2016 年 ...
- POWERDESIGNER生成的代码有引号
昨天在用powerdesigner画的一个导入ORACLE中.发现都带了双引号, 当时没在意,以为是分隔符.那想后要在ORACLE查询表是一定要输入双引号才能查询.. 后来才知道而这在oracle 中 ...
- [T-ARA/筷子兄弟][Little Apple]
歌词来源:http://music.163.com/#/song?id=29753511 作曲 : 筷子兄弟 [作曲 : 筷子兄弟] 作词 : K-Smith [作词 : KSmith] 编曲 : 新 ...