设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子。记搜一发即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,n,f[N],phi[N],prime[N>>],cnt=;
bool flag[N];
int ksm(int a,int k,int p)
{
int s=;
for (;k;k>>=,a=1ll*a*a%p) if (k&) s=1ll*s*a%p;
return s;
}
int calc(int n)
{
if (~f[n]) return f[n];
return f[n]=ksm(,calc(phi[n])+phi[n],n);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3883.in","r",stdin);
freopen("bzoj3883.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=;phi[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];break;}
else phi[prime[j]*i]=phi[i]*(prime[j]-);
}
}
memset(f,,sizeof(f));f[]=f[]=;
T=read();
while (T--)
{
n=read();
printf("%d\n",calc(n));
}
return ;
}

BZOJ3884 上帝与集合的正确用法(欧拉函数)的更多相关文章

  1. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  2. [bzoj3884]上帝与集合的正确用法——欧拉函数

    题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...

  3. [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)

    题目链接:  https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...

  4. bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

    欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...

  5. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  6. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...

  8. bzoj3884: 上帝与集合的正确用法(数论)

    感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...

  9. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

随机推荐

  1. JUnit在intellij idea中只能在test里面才能使用,否则不能添加import

    只能在 src下的test下使用 不能再main下使用 否则不能import到指定的junit包 idea这样做的好处就是分离主项目和测试项目,这样一来就能够更加方便的测试了 如图直接这样把整个主包  ...

  2. 一个web应用的诞生(2)--使用模板

    经过了第一章的内容,已经可以做出一些简单的页面,首先用这种方式做一个登录页面,首先要创建一个login的路由方法: @app.route("/login",methods=[&qu ...

  3. Keil出错解决方法

    1.安装KEIL5后创建工程后出现这个报错 解决方法:打开下图目录的文件. Keil.STM32F1xx_DFP.pdsc文件是只读文件,必须将只读属性取消. 如下图所示,注释掉红色圆圈的哪一行,保存 ...

  4. python-编程从入门到实践

    python-编程从入门到实践 1.python文件后缀名: .py 是Python的源码文件,由Python.exe解释. .pyc 是Python的编译文件.pyc 文件往往代替 py 文件发布: ...

  5. katalon系列十:Katalon Studio自定义关键字之拖拽

    Katalon Studio自带关键字“Drag And Drop To Object”,可以在这个网站实践:http://jqueryui.com/droppable/#default 不过“Dra ...

  6. sql 命令使用简单记录

    半个月前就想记下用过的SQL命令的!!!     主题: 按时间查询: https://blog.csdn.net/hejpyes/article/details/41863349   左关联: se ...

  7. RabbitMQ各协议异同详解

    一.官网介绍 Which protocols does RabbitMQ support? RabbitMQ supports several messaging protocols, directl ...

  8. 《More Effective C++ 》读书笔记(二)Exception 异常

    这事篇读书笔记,只记录自己的理解和总结,一般情况不对其举例子具体说明,因为那正是书本身做的事情,我的笔记作为梳理和复习之用,划重点.我推荐学C++的人都好好读一遍Effective C++ 系列,真是 ...

  9. 【MySQL 数据库】MySQL目录

    目录 [第一章]MySQL数据概述 [第二章]MySQL数据库基于Centos7.3-部署 [MySQL解惑笔记]Centos7下卸载彻底MySQL数据库 [MySQL解惑笔记]忘记MySQL数据库密 ...

  10. [CF1137]Museums Tour

    link \(\text{Description:}\) 一个国家有 \(n\) 个城市,\(m\) 条有向道路组成.在这个国家一个星期有 \(d\) 天,每个城市有一个博物馆. 有个旅行团在城市 \ ...