设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子。记搜一发即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10000010
int T,n,f[N],phi[N],prime[N>>],cnt=;
bool flag[N];
int ksm(int a,int k,int p)
{
int s=;
for (;k;k>>=,a=1ll*a*a%p) if (k&) s=1ll*s*a%p;
return s;
}
int calc(int n)
{
if (~f[n]) return f[n];
return f[n]=ksm(,calc(phi[n])+phi[n],n);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3883.in","r",stdin);
freopen("bzoj3883.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=;phi[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];break;}
else phi[prime[j]*i]=phi[i]*(prime[j]-);
}
}
memset(f,,sizeof(f));f[]=f[]=;
T=read();
while (T--)
{
n=read();
printf("%d\n",calc(n));
}
return ;
}

BZOJ3884 上帝与集合的正确用法(欧拉函数)的更多相关文章

  1. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

  2. [bzoj3884]上帝与集合的正确用法——欧拉函数

    题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...

  3. [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)

    题目链接:  https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...

  4. bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

    欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...

  5. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  6. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...

  8. bzoj3884: 上帝与集合的正确用法(数论)

    感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...

  9. bzoj3884上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

随机推荐

  1. day 12 列表字典 补充

    1.列表list的遍历 ##### while遍历 需要len(list) list = [11,22,33,44,55] len_list = len(list) i = 0 while i< ...

  2. 【BZOJ4566】[HAOI2016]找相同字符

    [BZOJ4566][HAOI2016]找相同字符 题面 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两个子串中有一个位置不同. 其中\(1\le ...

  3. python的pip升级问题

    近来由于pip升级为10.0.1了,导致使用pip命令报错,使用过很多方法,最终找到一种相对靠谱的方法,一下是步骤: 进入https://pypi.python.org/pypi/pip 下载pip- ...

  4. eclipse集成testng插件(离线安装方式)

    testng是一个优秀的测试框架,我们在开发自动化测试脚本或者框架的时候经常会用到这个框架,因为它不仅能方便的帮助我们管理测试类,而且它还提供了丰富的注解来支持各种测试场景的实现(参数化,数据提供者, ...

  5. manjaro i3下 dmenu terminal 和 terminal_hold 打开方式记录

    分别用type为terminal 和 terminal_hold 打开eclipse 用terminal_hold打开,终端和界面分左右显示 用terminal打开,终端和界面分上下显示 除了排列方式 ...

  6. 使用IntelRealScene设备结合Cocos引擎实现体感游戏开发

    英特尔开发人员专区原文地址 Cocos游戏开发引擎对于广大开发者来说都比较熟悉,Intel RealScene是什么呢,简单理解是一种特殊的摄像头,可以捕捉用户的手势,面部表情等,进而实现AR,VR的 ...

  7. 运输层(TCP/UDP)详解

    TCP和UDP的区别: tcp是面向连接的可靠的传输协议 udp是非连接的不可靠的传输协议 TCP组成 可以看到虽然tcp是面向字节流的,但是其传输的基本单位还是报文(tcp首部和数据,ip报文和ud ...

  8. MySQL事务、并发问题、锁机制

    MySQL事务,并发问题,锁机制 1.什么是事务 事务是一条或多条数据库操作语句的组合,具备ACID,4个特点. 原子性:要不全部成功,要不全部撤销 隔离性:事务之间相互独立,互不干扰 一致性:数据库 ...

  9. centos7.2部署docker-17.06.0-ce的bug:Error response from daemon: oci runtime error: container_linux.go:262: starting container process caused "process_linux.go:339: container init caused \"\"".

    现象: 操作系统:centos 7.2 kernel 3.10.0-327.el7.x86_64 mesos:1.3.0 docker:docker-17.06.0-ce 在做mesos验证时,通过m ...

  10. 172322 2018-2019-1 《Java软件结构与数据结构》实验一报告

    172322 2018-2019-1 <Java软件结构与数据结构>实验一报告 课程:<程序设计与数据结构> 班级: 1723 姓名: 张昊然 学号:20172322 实验教师 ...