题意:

佳佳有一个n*m的带权矩阵,她想从(1,1)出发走到(n,m)且只能往右往下移动,她能得到的娱乐值为所经过的位置的权的总和。

有一天,她被下了恶毒的诅咒,这个诅咒的作用是将她的娱乐值变为对p取模后的值,这让佳佳十分的不开心,因为她无法找到一条能使她得到最大娱乐值的路径了!

她发现这个问题实在是太困难了,既然这样,那就只在3*n的矩阵内进行游戏吧!

现在的问题是,在一个3*n的带权矩阵中,从(1,1)走到(3,n),只能往右往下移动,问在模p意义下的移动过程中的权总和最大是多少。

实际上路径总是第一行1-i,第二行i-j,第三行j-n.

考虑问题的补,先求出矩阵的总和%p,不妨设为sum,那么减去没有走过的格子总和%p,不妨设为val。

而这个val可以表示为两个数列的前缀和和后缀和的值之和,需要动态调整找到最大的方案,使用set可以达到这个目标。

时间复杂度O(nlogn).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[][N], inv1[N], inv2[N], sum1[N], sum2[N], n, p;
set<int>vv;
set<int>::iterator it; void init(){
FOR(i,,n) inv1[i]=(inv1[i-]+a[][i])%p, sum2[i]=(sum2[i-]+a[][i])%p;
FDR(i,n,) inv2[i]=(inv2[i+]+a[][i])%p, sum1[i]=(sum1[i+]+a[][i])%p;
FOR(i,,n-) inv1[i]=(inv1[i]+sum1[i+])%p;
FDR(i,n+,) inv2[i]=(inv2[i]+sum2[i-])%p;
}
int main ()
{
int sum=, ans=;
n=Scan(); p=Scan();
FOR(i,,) FOR(j,,n) a[i][j]=Scan(), sum=(sum+a[i][j])%p;
init();
FDR(i,n-,) {
vv.insert(inv2[i+]);
int val=(sum-inv1[i]+p+)%p;
it=vv.lower_bound(val);
if (it==vv.end()) it=vv.begin();
ans=max(ans,((sum-inv1[i]-*it)%p+p)%p);
}
printf("%d\n",ans);
return ;
}

51nod 1624 取余最短路(set)的更多相关文章

  1. 51nod 1624 取余最长路

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1624 题意: 思路:因为一共只有3行,所以只需要确定第一行和第二行的转折 ...

  2. 1624 取余最长路(set)

    1624 取余最长路 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 佳佳有一个n*m的带权矩阵,她想从(1,1)出发走到(n,m)且只能往右往下移动,她能得到的娱 ...

  3. 51 nod 1624 取余最长路 思路:前缀和 + STL(set)二分查找

    题目: 写这题花了我一上午时间. 下面是本人(zhangjiuding)的思考过程: 首先想到的是三行,每一行一定要走到. 大概是这样一张图 每一行长度最少为1.即第一行(i -1) >= 1, ...

  4. POJ 3070 + 51Nod 1242 大斐波那契数取余

    POJ 3070 #include "iostream" #include "cstdio" using namespace std; class matrix ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. BZOJ 2118 墨墨的等式 (同余最短路)

    题目大意:已知B的范围,求a1x1+a2x2+...+anxn==B存在非负正整数解的B的数量,N<=12,ai<=1e5,B<=1e12 同余最短路裸题 思想大概是这样的,我们选定 ...

  7. 【CodeChef】LECOINS(同余最短路,背包DP)

    题意:给定n个物品,每个物品可以取无限次,每个物品有两种属性:价值v和颜色c 现在有q个询问,每次询问是否能取出价值和为S的方案,如有多解输出不同颜色种数的最大值 题意:看到BZOJ评论区有好心人说C ...

  8. 【同余最短路】洛谷 P2662 牛场围栏

    关于同余最短路的部分 [同余最短路]P3403跳楼机/P2371墨墨的等式 [P2662牛场围栏] 题目背景 小L通过泥萌的帮助,成功解决了二叉树的修改问题,并因此写了一篇论文, 成功报送了叉院(羡慕 ...

  9. 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式

    接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...

随机推荐

  1. WPF中使用WindowChrome自定义窗口中遇到的最大化问题

    FrameWork 4.5 之后,内置了WindowChrome类,官方文档: https://msdn.microsoft.com/en-us/library/system.windows.shel ...

  2. centos7安装cacti

    参考博客地址:https://blog.csdn.net/kenn_lee/article/details/80565385 Cacti是一套基于PHP,MySQL,SNMP及RRDTool开发的网络 ...

  3. Drupal7 实现like(点赞)功能

    尝试了好几个模块做下总结: 1. Like Dislike Buttons 好处:代码实现简单,一看就懂,开启后无需任何配置,自动在node底部显示like和unlike的小手.而且模版改起来也容易. ...

  4. 我们一起学习WCF 第五篇数据协定和消息协定

    A:数据协定(“数据协定”是在服务与客户端之间达成的正式协议,用于以抽象方式描述要交换的数据. 也就是说,为了进行通信,客户端和服务不必共享相同的类型,而只需共享相同的数据协定. 数据协定为每个参数或 ...

  5. Maven学习(十六)-----Maven插件

    Maven插件 Maven 是一个执行插件的框架,每一个任务实际上是由插件完成的.Maven 插件通常用于: 创建 jar 文件 创建 war 文件 编译代码文件 进行代码单元测试 创建项目文档 创建 ...

  6. HttpClient使用详解 (一)

    Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且 ...

  7. JS继承方法

    1.原型链: 每个构造函数都有一个原型对象,且有一个指针指向该原型对象(prototype),原型对象都包含一个指向构造函数的指针(constructor),而实例都包含一个指向原型对象的内部指针(p ...

  8. 经典教程|10 分钟速成 Python3

    Python 是由吉多·范罗苏姆(Guido Van Rossum)在 90 年代早期设计. 它是如今最常用的编程语言之一.它的语法简洁且优美,几乎就是可执行的伪代码. 注意:这篇教程是基于 Pyth ...

  9. CSP201612-2:工资计算

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  10. zabbix_agentd-install.sh (脚本部署zabbix_agentd服务)

    原文发表于cu:2016-05-20 基于http://www.cnblogs.com/netonline/p/7406598.html(http://blog.chinaunix.net/uid-2 ...