ZOJ3084_S-Nim
题目的意思是这样的,给定你若干堆石子,每次你可以从任一堆取出某些固定数量的石子,每次取完后必须保证没堆石子的数量不为0,谁无法操作了就算fail。
刚刚开始看题目的时候有点也没有思路,甚至连Sg函数也没有听过。后来学习了一番,说说自己的想法吧。
_________________有关SG函数的由来,性质及其我个人对sg函数的了解见下一篇日志。
这个题目可以这样考虑,由于每次可取的数字是一个给定的集合,我们可以求出所有的数所对应的sg的函数值(我用的是dp,不过好像跟多人喜欢用记忆化搜)。
由于博弈论里面的许多奇奇怪怪的定理,最终我们只要求出每一堆的石子数所对应的sg值的总共异或值ans,如果ans不等于0,那么说明先手有必胜的策略,否则后手有必胜的策略。
另外说明一下,sg函数值对应的是在当前状态能转化到的所有后继状态sg值中的第一个没有出现的非负整数。很神奇吧。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 10005
using namespace std; bool vis[];
int a[],sg[maxn],n,m,k,ans; void getSG()
{
for (int i=; i<maxn; i++)
{
memset(vis,false,sizeof vis);
for (int j=; j<=n && a[j]<=i; j++) vis[sg[i-a[j]]]=true;
for (int j=; ; j++)
if (!vis[j])
{
sg[i]=j;
break;
}
}
} int main()
{
while (scanf("%d",&n) && n)
{
for (int i=; i<=n; i++) scanf("%d",&a[i]);
sort(a+,a++n);
getSG();
scanf("%d",&m);
while (m--)
{
scanf("%d",&n);
ans=;
while (n--) scanf("%d",&k),ans^=sg[k];
if (ans) printf("W");
else printf("L");
}
printf("\n");
} return ;
}
ZOJ3084_S-Nim的更多相关文章
- [LeetCode] Nim Game 尼姆游戏
You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- HDU 5795 A Simple Nim 打表求SG函数的规律
A Simple Nim Problem Description Two players take turns picking candies from n heaps,the player wh ...
- LeetCode 292. Nim Game
Problem: You are playing the following Nim Game with your friend: There to stones. The one who remov ...
- 【SRM】518 Nim
题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\ ...
- HDU 2509 Nim博弈变形
1.HDU 2509 2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...
- HDU 1907 Nim博弈变形
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...
- Nim游戏
目前有3堆石子,每堆石子个数也是任意的,双方轮流从中取出石子,规则如下:1)每一步应取走至少一枚石子:每一步只能从某一堆中取走部分或全部石子:2)如果谁不能取谁就失败. Bouton定理: 必败状态当 ...
- HDU 3032 Nim or not Nim (sg函数)
加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...
- 292. Nim Game
292. Nim Game You are playing the following Nim Game with your friend: There is a heap of stones on ...
随机推荐
- 06004_Redis的启动、使用和停止
1.Redis的启动 (1)前端模式启动 ①直接运行bin/redis-server将以前端模式启动:切换到 /usr/local/redis/bin目录下,然后./redis-server : ②前 ...
- asp.net core添加全局异常处理及log4net、Nlog应用
0.目录 整体架构目录:ASP.NET Core分布式项目实战-目录 一.介绍 此篇文章将会介绍项目的全局异常收集以及采用log4net或者NLog记录. 众所周知,一旦自己的项目报错,如果没有进行处 ...
- Wince 中访问WCF服务
由于本文并非WinCE开发普及篇,所以一些WinCE开发和WCF开发的基础还请移步百度和谷歌寻找答案,然后结合本文开发出WinCE中如何访问WCF,谢谢. 开发环境 IDE:Visual Studio ...
- linux菜鸟笔记
linux目录的子目录复制 cp -r 要复制的目录+新的目录 cp -r a test 意思就是将a的子目录及文件复制到新的目录test下面 zt@ubuntu:~/Desktop$ mkdir - ...
- Java 验证码识别库 Tess4j 学习
Java 验证码识别库 Tess4j 学习 [在用java的Jsoup做爬虫爬取数据时遇到了验证码识别的问题(基于maven),找了网上挺多的资料,发现Tess4j可以自动识别验证码,在这里简单记录下 ...
- Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) E. Down or Right
从(1,1,n,n)每次只变一个坐标,进行询问. 如果问到对角线有距离限制, 再从(1,1,n/2,n/2)询问到(n/2,n/2,n,n) 记住前半部分贪心忘上走,后本部分贪心往右走 因为最后的路线 ...
- TPO 03 - Architecture
TPO 03 - Architecture Architecture is the art and science of designing structures that[主语是Architectu ...
- [network]交换机中用户权限
LEVEL 0(访问级):可以执行用于网络诊断等功能的命令.包括ping.tracert.telnet等命令,执行该级别命令的结果不能被保存到配置文件中. LEVEL 1(监控级):可以执行用于系统维 ...
- 【Python 开发】Python目录
目录: [Python开发]第一篇:计算机基础 [Python 开发]第二篇 :Python安装 [Python 开发]第三篇:python 实用小工具
- IO多路复用(二) -- select、poll、epoll实现TCP反射程序
接着上文IO多路复用(一)-- Select.Poll.Epoll,接下来将演示一个TCP回射程序,源代码来自于该博文https://www.cnblogs.com/Anker/p/3258674.h ...