<转>Logistic回归总结
转自http://blog.csdn.net/dongtingzhizi/article/details/15962797
当我第一遍看完台大的机器学习的视频的时候,我以为我理解了逻辑回归,可后来越看越迷糊,直到看到了这篇文章,豁然开朗
基本原理
Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程:
(1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。
(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。
(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。
具体过程
(1) 构造预测函数
Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。根据第二章中的步骤,需要先找到一个预测函数(h),显然,该函数的输出必须是两个值(分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
对应的函数图像是一个取值在0和1之间的S型曲线(图1)。
图1
接下来需要确定数据划分的边界类型,对于图2和图3中的两种数据分布,显然图2需要一个线性的边界,而图3需要一个非线性的边界。接下来我们只讨论线性边界的情况。
图2
图3
对于线性边界的情况,边界形式如下:
构造预测函数为:
hθ(x)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:
(2)构造Cost函数
Andrew Ng在课程中直接给出了Cost函数及J(θ)函数如式(5)和(6),但是并没有给出具体的解释,只是说明了这个函数来衡量h函数预测的好坏是合理的。
实际上这里的Cost函数和J(θ)函数是基于最大似然估计推导得到的。下面详细说明推导的过程。(4)式综合起来可以写成:
取似然函数为:
对数似然函数为:
最大似然估计就是要求得使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew
Ng的课程中将J(θ)取为(6)式,即:
因为乘了一个负的系数-1/m,所以J(θ)取最小值时的θ为要求的最佳参数。
(3)梯度下降法求J(θ)的最小值
求J(θ)的最小值可以使用梯度下降法,根据梯度下降法可得θ的更新过程:
式中为α学习步长,下面来求偏导:
上式求解过程中用到如下的公式:
因此,(11)式的更新过程可以写成:
因为式中α本来为一常量,所以1/m一般将省略,所以最终的θ更新过程为:
之后,参数更新为:
终止条件:
目前指定迭代次数。后续会谈到更多判断收敛和确定迭代终点的方法。
另外,补充一下,3.2节中提到求得l(θ)取最大值时的θ也是一样的,用梯度上升法求(9)式的最大值,可得:
观察上式发现跟(14)是一样的,所以,采用梯度上升发和梯度下降法是完全一样的,这也是《机器学习实战》中采用梯度上升法的原因。
<转>Logistic回归总结的更多相关文章
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...
- logistic回归
logistic回归 回归就是对已知公式的未知参数进行估计.比如已知公式是$y = a*x + b$,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计.估计的方法是在给定训练样 ...
- Logistic回归 python实现
Logistic回归 算法优缺点: 1.计算代价不高,易于理解和实现2.容易欠拟合,分类精度可能不高3.适用数据类型:数值型和标称型 算法思想: 其实就我的理解来说,logistic回归实际上就是加了 ...
- Logistic回归的使用
Logistic回归的使用和缺失值的处理 从疝气病预测病马的死亡率 数据集: UCI上的数据,368个样本,28个特征 测试方法: 交叉测试 实现细节: 1.数据中因为存在缺失值所以要进行预处理,这点 ...
- 如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...
- SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...
- SPSS数据分析—多分类Logistic回归模型
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logi ...
- SPSS数据分析—二分类Logistic回归模型
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
随机推荐
- win7 64位安装oracle10g客户端心得
用了整整两天时间才在64位Win7下装好了Oracle的开发环境(包括Oracle的客户端和第三方客户端工具),过程原来和32位类似,注意不能下载64位的安装包. 安装过程: 1.下载Oracle 1 ...
- FreeMarker 技术资料与问题解决备忘录
技术资料: http://www.ibm.com/developerworks/cn/java/j-lo-freemarker/ FM 解析hash序列 output[name = mouse; pr ...
- mac os x10.9.2 查看进程对应端口
以前在Ubuntu上,直接sudo netstat -nap 但是在mac 上这个命令还跑不通,sudo netstat -nap tcp 才行,结果还没有进程号.用lsof -Pn 解决了
- ansible debug模块学习笔记
- name: Print debug infomation eg hosts: test2 gather_facts: F tasks: - name: Command run line shell ...
- iOS彩票项目--第二天,自定义蒙版、封装活动菜单、自定义pop菜单
一.自定义蒙版--封装控件,先想好外界怎么来调用,根据外界调用的方法,然后进入内部实现 在外部,调用蒙版的方法--[ChaosCover show]; [ChaosCover hide]; 内部实现 ...
- 专题实验 EXP & IMP
导入导出时 oracle 提供的实用工具, 如果这些被导出的对象还存在其他的相关对象, 比如要被导出的表上还存在索引, 注释等, 则导出工具会自动将这些相关的对象也提取出来, 并放入到导出的文件中去. ...
- thinkphp 第一个设计总结
1.thinkphp的无限级分类不是万能的... 2.感觉先看前台(根据前台设计数据库)后写控制代码(后台),速度或许会快一点,思路明确...
- IntelliJ IDEA 14 利用JRebel实现热部署
特别鸣谢:http://wlb.wlb.blog.163.com/blog/static/467413201522095132658/ ©IntelliJ IDEA开源社①群 185441009 鸣谢 ...
- ioctl参数cmd=2错误
在写内核驱动的时候,用到了ioctl.自己定义cmd作为ioctl的参数.如下: enum CMD { LEVEL_DOWN, LEVEL_UP, GPIO_INPUT, GPIO_OUTPUT, G ...
- Javascript实用代码片段(译)
原文:http://www.bestdesigntuts.com/10-time-saving-javascript-code-snippets-for-web-developers 1. 同高或同宽 ...