BZOJ4446:[SCOI2015]小凸玩密室(树形DP)
Description
Input
Output
Sample Input
5 1 2
2 1
Sample Output
HINT
对于100%的数据,1≤N≤2×10^5,1<Ai,Bi≤10^5
Solution
神仙树形DP
一条合法的行走路径,一定是先走完一个点的子树,再访问它的兄弟的子树,访问完了就回到父节点。以此类推。
也就是说要求从某个点出发,访问完其子树后回到某个祖先的最小代价。
设$f[x][i]$表示从$x$开始访问完$x$的子树后再走到深度为$i$的祖先(设为$kfa$)的最小代价。
设$g[x][i]$表示从$x$开始访问完$x$的子树后再走到深度为$i$的祖先的另外一个儿子的最小代价。
$DP$完了之后枚举最开始先点亮哪个灯然后统计答案。因为是完全二叉树所以时空都是$nlogn$
转移见代码,手画个图对比着理解效果应该会好一点……
Code
#include<iostream>
#include<cstdio>
#define N (200009)
#define LL long long
#define ls (i<<1)
#define rs (i<<1|1)
#define kfa (i>>Depth[i]-j)
using namespace std; LL n,Depth[N],Dist[N],a[N],b[N],g[N][],f[N][],ans=1e18; void DP()
{
for (int i=n; i>=; --i)
for (int j=; j<=Depth[i]; ++j)
if (ls>n)//当前是叶子
{
f[i][j]=(Dist[i]-Dist[kfa])*a[kfa];
g[i][j]=(Dist[i]-Dist[kfa]+b[kfa]+b[kfa^])*a[kfa^];
}
else if (ls==n)//只有左儿子
{
f[i][j]=b[ls]*a[ls]+f[ls][j];
g[i][j]=b[ls]*a[ls]+g[ls][j];
}
else//左右儿子都有
{
f[i][j]=min(
b[ls]*a[ls]+g[ls][Depth[ls]]+f[rs][j],
b[rs]*a[rs]+g[rs][Depth[rs]]+f[ls][j]);
g[i][j]=min(
b[ls]*a[ls]+g[ls][Depth[ls]]+g[rs][j],
b[rs]*a[rs]+g[rs][Depth[rs]]+g[ls][j]);
}
} int main()
{
scanf("%lld",&n);
for (int i=; i<=n; ++i)
scanf("%lld",&a[i]);
for (int i=; i<=n; ++i)
scanf("%lld",&b[i]);
for (int i=; i<=n; ++i)
{
Depth[i]=Depth[i>>]+;
Dist[i]=Dist[i>>]+b[i];
}
DP();
for (int i=; i<=n; ++i)//枚举最先点哪个灯统计答案
{
LL now=f[i][Depth[i]-];
for (int j=i; j!=; j>>=)
if ((j^)>n) now+=b[j>>]*a[j>>];
else now+=b[j^]*a[j^]+f[j^][Depth[j]-];
ans=min(ans,now);
}
printf("%lld\n",ans);
}
BZOJ4446:[SCOI2015]小凸玩密室(树形DP)的更多相关文章
- [BZOJ4446]SCoi2015 小凸玩密室 树形DP(烧脑高能预警)
4446: [Scoi2015]小凸玩密室 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点 ...
- LUOGU P4253 [SCOI2015]小凸玩密室(树形dp)
传送门 解题思路 玄学树形\(dp\),题目描述极其混乱...看错了两次题,设首先根据每次必须点完子树里的灯才能点别的,那么点灯情况只有两种,第一种是点到某一个祖先,第二种是点到某一个祖先的兄弟.所以 ...
- BZOJ.4446.[SCOI2015]小凸玩密室(树形DP)
BZOJ LOJ 洛谷 (下面点亮一个灯泡就说成染色了,感觉染色比较顺口... 注意完全二叉树\(\neq\)满二叉树,点亮第一个灯泡\(\neq\)第一次点亮一号灯泡,根节点应该就是\(1\)... ...
- BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】
题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...
- 2019.03.26 bzoj4446: [Scoi2015]小凸玩密室(树形dp)
传送门 题意简述: 给一棵完全二叉树,有点权aia_iai和边权,每个点有一盏灯,现在要按一定要求点亮: 任意时刻点亮的灯泡必须连通 点亮一个灯泡后必须先点亮其子树 费用计算如下:点第一盏灯不要花费 ...
- BZOJ4446 SCOI2015小凸玩密室(树形dp)
设f[i][j]为由根进入遍历完i子树,最后一个到达的点是j时的最小代价,g[i][j]为由子树内任意一点开始遍历完i子树,最后一个到达的点是j时的最小代价,因为是一棵完全二叉树,状态数量是nlogn ...
- BZOJ4446: [Scoi2015]小凸玩密室
用ui,j表示走完i的子树后走到i的深度为j的祖先的兄弟的最小代价: 用vi,j表示走完i的子树后走到i的深度为j的祖先的最小代价,用u算出v. 枚举起点,计算答案. #include<bits ...
- [bzoj4446] [loj#2009] [Scoi2015] 小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有 \(n\) 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 \(Ai\) ,每条边也有个权值 \ ...
- bzoj 4446: [Scoi2015]小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
随机推荐
- c# 中 event 和 delegate 的区别
event 是一种特殊的delegate. 1)event 在本类(派生类也不行)之外不能触发.(如果是public的在类外或protected的在派生类中可以使用 += 或 -=, 但不能调用该ev ...
- 来一波Linux中查看cpu、磁盘、内存、网络的命令
转载请注明出处. 如果想远程管理服务器就有远程管理卡,比如Dell idRAC,HP ILO,IBM IMM 查看硬件的温度/风扇转速,电脑有撸大师,服务器就有ipmitool.使用ipmitool实 ...
- 503 Service Unavailable
转自:https://jingyan.baidu.com/article/6b1823099a258eba58e15902.html 第一 服务是不是被关闭了. 第二 原因IIS设置最大并发连接数 网 ...
- SSM迁移到Springboot记录
日志问题 Exception in thread "main" java.lang.IllegalArgumentException: LoggerFactory is not a ...
- 以面向对象的思想实现数据表的添加和查询,JDBC代码超详细
以面向对象的思想编写JDBC程序,实现使用java程序向数据表中添加学生信息,并且可以实现给定身份证号查询学生信息或给定准考证号查询学生信息. 创建的数据表如下: CREATE TABLE EXAMS ...
- csharp: SQL Server 2005 Database Backup and Restore using C#
1.第一种方式: using SQLDMO;//Microsoft SQLDMO Object Library 8.0 /// <summary> /// 数据库的备份 /// 涂聚文注: ...
- Luogu4887 第十四分块(前体)
sto \(lxl\) orz 考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数 询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1] ...
- H5前端正则验证插件
最近学习了一个新的关于前端正则验证的插件,‘jQuery.validate.js ’ 要用这个插件 首先得有插件,下载jquery.validate.min.js 和jq文件并引入. 我把它简单的通俗 ...
- 一行代码解决各种IE的兼容问题
一行代码解决各种IE的兼容问题 在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 < ...
- 用WebStorm开发TypeScript
为什么是TypeScript 最近在做H5的游戏,最终选定的TypeScript作为开发语言.主要是看重他有强类型和Class,作为习惯使用AS3,Java等强类型编程的人来说,还是习惯这种编程写法. ...