P2258 子矩阵
题目描述
给出如下定义:
- 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。
例如,下面左图中选取第 222 、 444 行和第 222 、 444 、 555 列交叉位置的元素得到一个 2×32 \times 32×3 的子矩阵如右图所示。
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
的其中一个 2×32 \times 32×3 的子矩阵是
4 7 4
8 6 9
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个 nnn 行 mmm 列的正整数矩阵,请你从这个矩阵中选出一个 rrr 行 ccc 列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
(本题目为2014NOIP普及## 题目描述
给出如下定义:
- 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。
例如,下面左图中选取第 222 、 444 行和第 222 、 444 、 555 列交叉位置的元素得到一个 2×32 \times 32×3 的子矩阵如右图所示。
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
的其中一个 2×32 \times 32×3 的子矩阵是
4 7 4
8 6 9
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个 nnn 行 mmm 列的正整数矩阵,请你从这个矩阵中选出一个 rrr 行 ccc 列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
(本题目为2014NOIP普及T4)
输入输出格式
输入格式:
第一行包含用空格隔开的四个整数 n,m,r,cn,m,r,cn,m,r,c ,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的 nnn 行,每行包含 mmm 个用空格隔开的整数,用来表示问题描述中那个 nnn 行 mmm 列的矩阵。
输出格式:
一个整数,表示满足题目描述的子矩阵的最小分值。
输入输出样例
输入样例#1: 复制
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
输出样例#1: 复制
6
输入样例#2: 复制
7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
输出样例#2: 复制
16
说明
【输入输出样例1说明】
该矩阵中分值最小的 222 行 333 列的子矩阵由原矩阵的第 444 行、第 555 行与第 111 列、第 333 列、第 444 列交叉位置的元素组成,为
6 5 6
7 5 6
,其分值为:
|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。
【输入输出样例2说明】
该矩阵中分值最小的3行3列的子矩阵由原矩阵的第 444 行、第 555 行、第 666 行与第 222 列、第 666 列、第 777 列交叉位置的元素组成,选取的分值最小的子矩阵为
9 7 8
9 8 8
5 8 10
【数据说明】
对于 50%50%50% 的数据, 1≤n≤12,1≤m≤121 ≤ n ≤ 12,1 ≤ m ≤ 121≤n≤12,1≤m≤12 ,矩阵中的每个元素 1≤aij≤201 ≤ a_{ij} ≤ 201≤aij≤20 ;
对于 100%100%100% 的数据, 1≤n≤16,1≤m≤161 ≤ n ≤ 16,1 ≤ m ≤ 161≤n≤16,1≤m≤16 ,矩阵中的每个元素 1≤aij≤1,000,1≤r≤n,1≤c≤m1 ≤ a_{ij} ≤ 1,000,1 ≤ r ≤ n,1 ≤ c ≤ m1≤aij≤1,000,1≤r≤n,1≤c≤m 。T4)
输入输出格式
输入格式:
第一行包含用空格隔开的四个整数 n,m,r,cn,m,r,cn,m,r,c ,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的 nnn 行,每行包含 mmm 个用空格隔开的整数,用来表示问题描述中那个 nnn 行 mmm 列的矩阵。
输出格式:
一个整数,表示满足题目描述的子矩阵的最小分值。
输入输出样例
输入样例#1: 复制
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
输出样例#1: 复制
6
输入样例#2: 复制
7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
输出样例#2: 复制
16
说明
【输入输出样例1说明】
该矩阵中分值最小的 222 行 333 列的子矩阵由原矩阵的第 444 行、第 555 行与第 111 列、第 333 列、第 444 列交叉位置的元素组成,为
6 5 6
7 5 6
,其分值为:
|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。
【输入输出样例2说明】
该矩阵中分值最小的3行3列的子矩阵由原矩阵的第 444 行、第 555 行、第 666 行与第 222 列、第 666 列、第 777 列交叉位置的元素组成,选取的分值最小的子矩阵为
9 7 8
9 8 8
5 8 10
【数据说明】
对于 \(50\%\)的数据, \(1 ≤ n ≤ 12,1 ≤ m ≤ 12\),矩阵中的每个元素 \(1 ≤ a_{ij} ≤ 20\);
对于 \(100\%\) 的数据, \(1≤n≤16,1≤m≤16\) ,矩阵中的每个元素 \(1 ≤ a_{ij} ≤ 1,000,1 ≤ r ≤ n,1 ≤ c ≤ m\)。
先爆搜出\(r\)行,再在选出的行中dp选出\(c\)列即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int i,m,n,j,k,a[20][20],b[20][20],r,c,d[20],w[20],f[20][20],ans=0x3f3f3f3f;
void dp()
{
memset(w,0,sizeof(w));
memset(b,0,sizeof(b));
memset(f,0x3f,sizeof(f));
for(int i=1;i<=m;i++)
for(int j=2;j<=r;j++)
w[i]+=abs(a[d[j]][i]-a[d[j-1]][i]);
for(int i=1;i<m;i++)
for(int j=i+1;j<=m;j++)
for(int l=1;l<=r;l++)
b[i][j]+=abs(a[d[l]][i]-a[d[l]][j]);
f[0][0]=0;
for(int i=1;i<=m;i++)
for(int j=1;j<=min(i,c);j++)
for(int l=j-1;l<i;l++)
f[i][j]=min(f[i][j],f[l][j-1]+b[l][i]+w[i]);
for(int i=c;i<=m;i++) ans=min(ans,f[i][c]);
}
void dfs(int k,int now)
{
if(k==r) {dp(); return;}
for(int i=now;i<=n-r+k+1;i++) d[k+1]=i,dfs(k+1,i+1);
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++) scanf("%d",&a[i][j]);
dfs(0,1);
printf("%d",ans);
}
P2258 子矩阵的更多相关文章
- 洛谷 P2258 子矩阵 解题报告
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...
- 洛谷P2258 子矩阵
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...
- P2258 子矩阵(dp)
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...
- P2258 子矩阵——搜索+dp
P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_hen ...
- 洛谷 P2258 子矩阵
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...
- luogu P2258 子矩阵 |动态规划
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...
- P2258子矩阵
传送 一道看起来就很暴力的题. 这道题不仅暴力,还要用正确的姿势打开暴力. 因为子矩阵的参数有两个,一个行一个列(废话) 我们一次枚举两个参数很容易乱对不对?所以我们先枚举行,再枚举列 枚举完行,列, ...
- 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...
- 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划
作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...
随机推荐
- Emacs快速入门
Emacs 快速入门 Emacs 启动: 直接打emacs, 如果有X-windows就会开视窗. 如果不想用X 的版本, 就用 emacs -nw (No windows)起动. 符号说明 C-X ...
- NSURLSession和NSURLConnection
iOS9.0之后NSURLConnection被注销,采用NSURLSession,先介绍NSURLSession,然后介绍NSURLConnection 1.NSURLSession: post请求 ...
- Zookeeper配置要点必看
注意点 zookeeper需要在各个节点的机器上搭建,它的启动也要在各个节点的$ZOOKEEPER_HOME/bin 下启动. 环境搭建 下载安装包并解压. 在$ZOOKEEPER_HOME/conf ...
- 配置JDK1.7开发环境
学习java知识,首先要安装jdk来配置开发环境和java运行环境,本文介绍一下JDK配置流程和验证配置成功的方法. 一.配置JDK 1.首先下载jdk1.7压缩包并解压到D盘. 2.我的电脑--右键 ...
- Hunger Snake
除了驱动的效果.
- spring 与 springmvc 的区别和定义
前言:(内附 spring 下载地址,可以选择需要的版本,给有需要的朋友)补充一下基础知识,spring 的定义和 springmvc 的定义,来源于百度百科. spring 源码下载地址 https ...
- libevent学习笔记 —— 牛刀小试:简易的服务器
回想起之前自己用纯c手动写epoll循环,libevent用起来还真是很快捷啊!重写了之前学习的时候的一个例子,分别用纯c与libevent来实现.嗯,为了方便对比一下,就一个文件写到黑了. 纯c版: ...
- mysql 报错 ‘u'Subquery returns more than 1 row'’
watch_course_sql ) , '%%Y-%%m-%%d %%T') regtime, a.username FROM bskuser a where a.UserName in (sele ...
- cookie、session、分页
一.cookie HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不会直接影响后面的请求响应情 ...
- Myeclipse下集成SVN插件
一.下载SVN插件subclipse 下载地址:http://subclipse.tigris.org/servlets/ProjectDocumentList?folderID=2240 在 ...