【图像处理】计算Haar特征个数
http://blog.csdn.net/xiaowei_cqu/article/details/8216109
Haar特征/矩形特征
Haar特征本身并不复杂,就是用图中黑色矩形所有像素值的和减去白色矩形所有像素值的和。

看过Rainer Lienhart文章的人知道,Rainer Lienhart在文章中给出了计算特定图像面积内Haar特征个数公式。小女才拙,到最后也没推出那个公式来,还望看明白的大牛留言指教~
Haar特征个数计算
Rainer Lienhart计算Haar特征个数的公式:

其中,
为图片大小,
为矩形特征大小,
表示矩形特征在水平和垂直方向的能放大的最大比例系数。
对于45°的rotated特征(如1(c)和1(d)),w,h表示如下图所示:

其计算公式为:

*论文中没有说明,个人认为此处除了Z,XY值也有变化:
下面是我理解的计算过程~
首先有两点要清楚:
1、对于某特定大小的特征,在窗口内滑动计算。
也就是如图1(a)特征大小为2*1,对于24*24的图像。水平可滑动23步,垂直滑动24步,所以共有23*24个特征。
2、对于一个特征,特征本身沿水平、竖直方向分别缩放。
还看特征1(a),特征大小为2*1,则延水平方向可放大为:4*1,6*1,8*1,…,24*1;竖直方向可放大为:2*1,2*2,2*3,…,2*24。即每个特征有XY种放大方式。(!放大的矩形特征并限制保持2:1的比例!)
清楚这两点,就很容易写出计算特征个数的代码:
- int getHaarCount(int W,int H,int w,int h){
- int X=W/w;
- int Y=H/h;
- int count=0;
- //放大Haar特征到 iw*jh
- for (int i=1;i<=X;i++)
- for(int j=1;j<=Y;j++)
- //滑动iw*jh矩形,遍历图像计算每个位置Haar特征
- for(int x=1;x<=W-i*w+1;x++)
- for(int y=1;y<=H-j*h+1;y++)
- count++;
- return count;
- }
对于45°特征,由于Rainer Lienhart定义的w,h与原矩阵含义不同(参见第一幅图),即实际滑动的矩阵框为(h+w)*(w+h)。
所以只要用如下方式调用原函数:
- getHaarCount(W,H,h+w,w+h);
当然如果你喜欢写代码,也可以写个新的函数:
- int getRotatedHaarCount(int W,int H,int w,int h){
- int X=W/(w+h);//计算新的X
- int Y=H/(w+h);//计算新的Y
- int count=0;
- for (int i=1;i<=X;i++)
- for(int j=1;j<=Y;j++)
- //注意这里滑动窗口边界变化
- for(int x=1;x<=W-i*(w+h)+1;x++)
- for(int y=1;y<=H-j*(w+h)+1;y++)
- count++;
- return count;
- }
计算在24*24的图片中,几种特征的个数为:

可以看到和论文用公式计算得到的值是一致的~

另一种递推计算方法:
特征个数虽然很大,但很有规律,不用程序用笔也很容易推出递推公式。
如1(a)和1(b)特征递推为:(12^2)*(1+2+...+24)=43,200
具体参见此贴:Re: [OpenCV] Re: Number of haar features
【图像处理】计算Haar特征个数的更多相关文章
- 基于Haar特征Adaboost人脸检测级联分类
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.A ...
- 模式匹配之常见匹配算法---SIFT/SURF、haar特征、广义hough变换的特性对比分析
识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...
- 照片美妆---基于Haar特征的Adaboost级联人脸检测分类器
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/3484223 ...
- 【计算机视觉】极限优化:Haar特征的另一种的快速计算方法—boxfilter
这种以Boxfilter替代integral image 的方法很难使用到haar.LBP等特征检测中,因为像下面说的,它不支持多尺度,也就是说所提取的特征必须是同一个大小,最起码同一个宽高比的,这一 ...
- 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...
- 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...
- [CV笔记]图像特征提取三大法宝:HOG特征,LBP特征,Haar特征
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...
- AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图
原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...
- 基于Haar特征的Adaboost级联人脸检测分类器
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征 ...
随机推荐
- 《C++ Primer Plus》14.4 类模板 学习笔记
14.4.1 定义类模板下面以第10章的Stack类为基础来建立模板.原来的类声明如下:typedef unsigned long Item; class Stack{private: enum ...
- iOS - UIScrollView xib添加约束的坑
一.Storyboard中的UIScrollView使用自动布局 在使用storyboard和xib时,我们经常要用到ScrollView,还有自动布局AutoLayout,但是ScrollView和 ...
- shiro-filter执行流程
web中 在xml中配置 <filter> <filter-name>shiroFilter</filter-name> <filter-class>o ...
- PHP之命名空间
前面的话 从广义上来说,命名空间是一种封装事物的方法.在很多地方都可以见到这种抽象概念.例如,在操作系统中目录用来将相关文件分组,对于目录中的文件来说,它就扮演了命名空间的角色.这个原理应用到程序设计 ...
- 【Node.js】Mac 下安装node图文详解
1 进入官网,下载node最新版 官网:https://nodejs.org/en/ 2 双击下载的安装包,一路默认安装就行 3 打开终端,输入以下命令查看结果,如出现下图信息则为安装成功 4 ...
- 兼容ie8的框架
layui Flow-UI http://refined-x.com/Flow-UI/
- Sencha中Element的使用
在sencha touch中如果你要是用模板来构造一些UI,那么你就必定要去操作Element,如下是我对Element的一些操作和遇到的问题 获取Elenent Ext.get("ID&q ...
- 解决在微信中部分IOS不能自动播放背景音乐
前言在做各种HTML5场景页面的时候,插入背景音乐是一个很普遍的需求.我们都知道,IOS下的safari是无法自动播放音乐的,以至一直以来造成一种错误的认识,iso是无法自动播放媒体资源的.直到微信火 ...
- c# winform窗体边框风格的设计
1.首先,窗体的FormBorderStyle设置成None,不要控制边框. 2.然后,TransparencyKey和BackColor颜色设置成相同的,这样,窗体就透明了. 3.最后,窗体的拖动 ...
- rest_framework之序列化详解 06
拿到所有的角色数据 1.urls.py 2.models.py 假设只有3个角色 3.views.py from api import models import json json只能序列化pyt ...