An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


Figure 1

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2 lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:

6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop

Sample Output:

3 4 2 6 5 1
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
const int maxn = ;
struct Node{
int data;
Node* lchild;
Node* rchild;
}; int pre[maxn],in[maxn];
int n,num = ; Node* createTree(int preL,int preR,int inL,int inR){
if(preL > preR) return NULL;
Node* root = new Node;
root->data = pre[preL];
int k;
for(k = inL; k <= inR; k++){
if(in[k] == pre[preL]) break;
}
int numLeft = k - inL;
root->lchild = createTree(preL+,preL+numLeft,inL,k-);
root->rchild = createTree(preL+numLeft+,preR,k+,inR);
return root;
} void postOrder(Node* root){
if(root == NULL) return;
postOrder(root->lchild);
postOrder(root->rchild);
printf("%d",root->data);
num++;
if(num < n) printf(" ");
} int main(){
scanf("%d",&n);
char str[];
int x,preIndex = ,inIndex = ;
stack<int> s;
for(int i = ; i < *n; i++){
getchar();
scanf("%s",str);
if(strcmp(str,"Push") == ){
scanf("%d",&x);
s.push(x);
pre[preIndex++] = x;
}else{
in[inIndex++] = s.top();
s.pop();
}
}
Node* root = createTree(,n-,,n-);
postOrder(root);
return ;
}

03-树3 Tree Traversals Again (25 分)的更多相关文章

  1. PTA 03-树3 Tree Traversals Again (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/667 5-5 Tree Traversals Again   (25分) An inor ...

  2. PAT 甲级 1086 Tree Traversals Again (25分)(先序中序链表建树,求后序)***重点复习

    1086 Tree Traversals Again (25分)   An inorder binary tree traversal can be implemented in a non-recu ...

  3. 数据结构课后练习题(练习三)7-5 Tree Traversals Again (25 分)

    7-5 Tree Traversals Again (25 分)   An inorder binary tree traversal can be implemented in a non-recu ...

  4. 【PAT甲级】1086 Tree Traversals Again (25 分)(树知二求一)

    题意:输入一个正整数N(<=30),接着输入2*N行表示栈的出入(入栈顺序表示了二叉搜索树的先序序列,出栈顺序表示了二叉搜索树的中序序列),输出后序序列. AAAAAccepted code: ...

  5. A1020 Tree Traversals (25 分)

    Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and i ...

  6. PAT A1020 Tree Traversals (25 分)——建树,层序遍历

    Suppose that all the keys in a binary tree are distinct positive integers. Given the postorder and i ...

  7. 1020 Tree Traversals (25 分)(二叉树的遍历)

    给出一个棵二叉树的后序遍历和中序遍历,求二叉树的层序遍历 #include<bits/stdc++.h> using namespace std; ; int in[N]; int pos ...

  8. 03-树3 Tree Traversals Again (25 分)

    An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example ...

  9. 03-树2. Tree Traversals Again (25)

    03-树2. Tree Traversals Again (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue ...

  10. 03-树3. Tree Traversals Again (25)将先序遍历和中序遍历转为后序遍历

    03-树3. Tree Traversals Again (25) 题目来源:http://www.patest.cn/contests/mooc-ds/03-%E6%A0%913 An inorde ...

随机推荐

  1. 从YouTube改版看“移动优先”——8个移动优先网站设计案例赏析

    2011年,Luke Wroblewski大神提出了移动优先的设计理念.在当时看来这无疑是一个打破行业常规的新型设计原则.而在移动互联网大行其道的今天,谁遵守移动优先的设计理念,设计出最好的移动端网站 ...

  2. socket收发消息

    .socket通讯类 using System; using System.Collections.Generic; using System.Net; using System.Net.Socket ...

  3. Python中where()函数的用法

    where()的用法 首先强调一下,where()函数对于不同的输入,返回的只是不同的. 1当数组是一维数组时,返回的值是一维的索引,所以只有一组索引数组 2当数组是二维数组时,满足条件的数组值返回的 ...

  4. mongon命令(转)

    原文:http://www.cnblogs.com/blueness-sunshine/p/6139092.html   连接mongodb: mongo -u --authenticationDat ...

  5. php 访问用友u8数据

    <?php namespace app\api\controller; use think\Controller; use think\Db; use think\Log; /** * desc ...

  6. VS2010下连接Oracle数据库的方法

    在vs2010下使用OleDB连接Oracle数据库 ——此方法不需要配置数据源. 1. 在“服务器资源管理器”中,选择“数据库连接”,右击,选择“添加连接”. 2. 出现下面的界面,并按图中选择“用 ...

  7. linux每天一小步---cd命令详解

    1 命令功能: 该命令用于目录间的相互切换,cd是change directory的 缩写 2 命令语法:     cd  [目录名] 3 使用范例: 使用cd命令从当前用户的家目录切换到系统的根目录 ...

  8. Ian Goodfellow——对抗神经网络之父

    争议.流派,有关GAN的一切:Ian Goodfellow Q&A:https://baijiahao.baidu.com/s?id=1595081179447191755&wfr=s ...

  9. CodeForces 572D Minimization(DP)

    题意翻译 给定数组AAA 和值kkk ,你可以重排AAA 中的元素,使得∑i=1n−k∣Ai−Ai+k∣\displaystyle\sum_{i=1}^{n-k} |A_i-A_{i+k}|i=1∑n ...

  10. 深水划水队项目---七天冲刺之day4

    由于有一名队员回家了,所以今天的站立式会议改成微信群线上讨论 工作进度: 1.游戏界面进一步美化中. 2.游戏基本功能已经初步实现. 3.计划今天内商讨出如何实现游戏中的难度选择功能与道具功能. 工作 ...