Beginning Scala study note(6) Scala Collections
Scala's object-oriented collections support mutable and immutable type hierarchies. Also support functional higher-order operations such as map, filter, and reduce that let you use expression-oriented programming in collections. Higher-order operations are not available with Java Collections library.
1. Scala Collection Hierarchy
Most collection classes exist in three packages: scala.collection, scala.collection.immutable, and scala.collection.mutable.
(1) package scala.collection
All types in scala.collections package are implemented in different ways in the Scala libraries based on whether the implementations are immutable or mutable. To keep these different implementations separate, there are packages called scala.collection.immutable and scala.collection.mutable.
1) Sequences
Sequences store a number of different values in a specific order. Sequences branch off into two main categories: indexed sequences and linear sequences.
# by default, Seq creates a List
scala> val x = Seq(,,)
x: Seq[Int] = List(, , )
# by default, IndexedSeq creates a Vector
scala> val x = IndexedSeq(,,)
x: IndexedSeq[Int] = Vector(, , )
2) Sets
A Scala Set is a collection of unique elements. By default, Set creates an immutable Set.
# colletion.immutable.package is automatically added to the current namespace. The collection.mutable is not.
scala> val x = Set(,,)
x: scala.collection.immutable.Set[Int] = Set(, , )
3) Map
Scala Map is a collection of key/value pairs, where all the keys must be unique.
# creating an immutable Map without requiring an import
scala> val map = Map( -> "a", -> "b", -> "c")
map: scala.collection.immutable.Map[Int,String] = Map( -> a, -> b, -> c)
(2) package scala.collection.immutable
# immutable Seq
# immutable Set
# immutable Map
1) Immutable Sequence
If you want an immutable collection that has efficient indexing, your default choice would generally be Vector.
# an immutable IndexedSeq creates a Vector
scala> val x = scala.collection.immutable.IndexedSeq(,,)
x: scala.collection.immutable.IndexedSeq[Int] = Vector(, , )
# an immutable LinearSeq creates a List
scala> val x = scala.collection.immutable.LinearSeq(,,)
x: scala.collection.immutable.LinearSeq[Int] = List(, , )
# an immutable Seq creates a List
scala> val x = scala.collection.immutable.Seq(,,)
x: scala.collection.immutable.Seq[Int] = List(, , )
A collection in package scala.collection.immutable will never change for everyone after it is created.
2) Immutable Set
# using an immutable Set
scala> val m = collection.immutable.Set(,,)
m: scala.collection.immutable.Set[Int] = Set(, , )
# an immutable SortedSet creates a TreeSet
scala> val m = collection.immutable.SortedSet(,,)
m: scala.collection.immutable.SortedSet[Int] = TreeSet(, , )
# using an immutable BitSet
scala> val m = collection.immutable.BitSet(,,)
m: scala.collection.immutable.BitSet = BitSet(, , )
3) Immutable Map
# using an immutable map without requiring an import
scala> val m = Map(->"a",->"b")
m: scala.collection.immutable.Map[Int,String] = Map( -> a, -> b)
# using an immutable Map with the prefix
scala> val m = collection.immutable.Map(->"a",->"b")
m: scala.collection.immutable.Map[Int,String] = Map( -> a, -> b)
# using an immutable.SortedMap
scala> val m = collection.immutable.SortedMap(->"a",->"b")
m: scala.collection.immutable.SortedMap[Int,String] = Map( -> b, -> a)
(3) package scala.collection.mutable
By default, Scala always picks immutable collections. To get the mutable default versions, you need to write explicitly collection.mutable.Set or collection.mutable.Iterable.
Note that a useful convention if you want to use both mutable and immutable versions of collections is to import just the collection.mutable. Then a word like Set without a prefix still refers to an immutable collections, whereas mutable.Set refers to the mutable counterpart.
scala> import scala.collection.mutable
import scala.collection.mutable
1) mutable sequences
a) Buffer
There is no immutable Buffer. Two most significant subtypes of Buffer are ArrayBuffer and ListBuffer.
# creating a Buffer
scala> val buffer = collection.mutable.Buffer(,,)
buffer: scala.collection.mutable.Buffer[Int] = ArrayBuffer(, , )
# a mutable Seq creates as ArrayBuffer
scala> val x = scala.collection.mutable.Seq(,,)
x: scala.collection.mutable.Seq[Int] = ArrayBuffer(, , )
# a mutable LinearSeq creates as MutableList
scala> val x = scala.collection.mutable.LinearSeq(,,)
x: scala.collection.mutable.LinearSeq[Int] = MutableList(, , )
# a mutable IndexedSeq creates an ArrayBuffer
scala> val x = collection.mutable.IndexedSeq(,,)
x: scala.collection.mutable.IndexedSeq[Int] = ArrayBuffer(, , )
# a mutable Set
scala> val m = collection.mutable.Set(,,)
m: scala.collection.mutable.Set[Int] = Set(, , )
# a mutable SortedSet create a TreeSet
scala> val m = scala.collection.mutable.SortedSet(,,)
m: scala.collection.mutable.SortedSet[Int] = TreeSet(, , )
# a mutable BitSet
scala> val m = scala.collection.mutable.BitSet(,,)
m: scala.collection.mutable.BitSet = BitSet(, , )
# a mutable Map
scala> val m = collection.mutable.Map(->"a",->"b")
m: scala.collection.mutable.Map[Int,String] = Map( -> b, -> a)
2. Using Immutable Collection Classes
# List
scala> val x = List(,,,)x: List[Int] = List(, , , )
# filtering through List
scala> x.filter(a => a % ==)
res0: List[Int] = List(, )
scala> x
res1: List[Int] = List(, , , )
# Array
scala> val a = Array(,,)
a: Array[Int] = Array(, , )
scala> a()
res2: Int =
# Map
scala> val m = Map("one"->,"two"->)
m: scala.collection.immutable.Map[String,Int] = Map(one -> , two -> )
scala> m("two")
res3: Int =
Lazy collections have elements that may not consume memory until they are accessed(e.g., Range)
scala> to
res7: scala.collection.immutable.Range.Inclusive = Range(, , , , , )
The nifty(精巧的) thing about Ranges is that the actual elements in the Range are not instantiated until they are accessed.
# Using Range as Lazy Collection
scala> ( to Integer.MAX_VALUE - ).take()
res8: scala.collection.immutable.Range = Range(, , , , )
Note that immutable collections may contain mutable items.
(1) Vector
# creating a Vector
scala> val x = IndexedSeq(,,)
x: IndexedSeq[Int] = Vector(, , )
scala> x()
res9: Int =
You can't modify a vector, so you add elements to an existing vector as you assign the result to a new variable.
scala> val a = Vector(,,)
a: scala.collection.immutable.Vector[Int] = Vector(, , )
scala> val b = a ++ Vector(,)
b: scala.collection.immutable.Vector[Int] = Vector(, , , , )
Use the updated method to replace one element in a vector while assigning the result to a new variable.
scala> val c = b.updated(,"x")
c: scala.collection.immutable.Vector[Any] = Vector(x, , , , )
scala> val a = Vector(,,,,)
a: scala.collection.immutable.Vector[Int] = Vector(, , , , )
scala> val b = a.take()
b: scala.collection.immutable.Vector[Int] = Vector(, )
scala> val c = a.filter(_ > )
c: scala.collection.immutable.Vector[Int] = Vector(, , )
# declare variable as a var and reassign the result back to the same variable
scala> var a = Vector(,,)
a: scala.collection.immutable.Vector[Int] = Vector(, , )
scala> a = a ++ Vector(,)
a: scala.collection.immutable.Vector[Int] = Vector(, , , , )
When you create an immutable Vector as a var, it appears you can somehow add new elements to it:
scala> var int = Vector()
int: scala.collection.immutable.Vector[Int] = Vector()
scala> int = int :+ :+
int: scala.collection.immutable.Vector[Int] = Vector(, , )
scala> int.foreach(println)
What's really happening is that the int variable points to a new collection each time you use the :+. The int variable is actually being reassinged to a new collection during each step.
(2) List[T]
scala> :: :: :: Nil
res11: List[Int] = List(, , )
# Anything that looks like an operator with a:(colon) as the first character is evaluated right to left.
scala> new ::(, new ::(, new ::(,Nil)))
res12: scala.collection.immutable.::[Int] = List(, , )
# sometimes you need to help type inferencer along
scala> List(,44.5,8d)
res13: List[Double] = List(1.0, 44.5, 8.0)
scala> List[Number](,44.5,8d)
res14: List[Number] = List(, 44.5, 8.0)
# Note that the list referred to by the variable x is unchanged, but a new List is created with a new head and the old tail.You can also merge two lists to form a new list. The operation is O(n).
scala> val x = List(,,)
x: List[Int] = List(, , )
scala> val y = List(,,)
y: List[Int] = List(, , )
scala> x ::: y
res15: List[Int] = List(, , , , , )
3. Getting Functional
scala> List(,,).filter(x => x % == )
res17: List[Int] = List(, )
If filter returns true, the elements is included in the resulting collection. The resulting collection is the same type of collection that filter was invoked on.
scala> def isOdd(x: Int) = x % ==
isOdd: (x: Int)Boolean
Filter works with any collections that contain any type.
scala> "99 red balloons".toList.filter(Character.isDigit)
res20: List[Char] = List(, )
Another useful method for picking the right elements out of a List is takeWhile.
# 从左往右提取数据,直到条件不满足时停止
scala> "Elwood eat mice".takeWhile(c => c != ' ')
res22: String = Elwood
4. Transformation
The map method on List (and Seq) transforms each element of a collection based on a function.
scala> List("A","Cat").map(s => s.toLowerCase)
res23: List[String] = List(a, cat)
If the function passed into map returns a different type, then the resulting collection is a collection of the type returned from the function.
scala> List("A","Cat").map(_.length)
res24: List[Int] = List(, )
scala> trait Person {def first: String}
defined trait Person
We can extract data from a collection of complex objects.
scala> val d = new Person{def first = "David"}
d: Person = $anon$@d6ae28
scala> val e = new Person{def first = "Elwood"}
e: Person = $anon$@1281a0
scala> val a = new Person{def first = "Archer"}
a: Person = $anon$@1845cfb
scala> List(a,d,e).map(_.first)
res25: List[String] = List(Archer, David, Elwood)
scala> List(a,d,e).map(a => <li>{a.first}</li>)
res26: List[scala.xml.Elem] = List(<li>Archer</li>, <li>David</li>, <li>Elwood</li>)
# find all the valid Person records, return the first names
scala> trait Person{
| def first : String
| def valid : Boolean
| }
defined trait Person scala> def validByAge(in: List[Person]) = in.filter(_.valid).map(_.first)
validByAge: (in: List[Person])List[String]
5. Reduxio(简化)
reduceLeft method allows you to perform an operation on adjacent(临近的) of the collection where the result of the first operation is fed into the next operation.
# find the biggest number
scala> List(,,,).reduceLeft(_ max _)
res11: Int =
# find the longest word
scala> List("moos","cow","A","cat").reduceLeft((a,b) => if(a.length > b.length) a else b)
res13: java.lang.String = moos
reduceLeft throws an exception on an Nil List.
foldLeft starts with a seed value. The return type of the function and the return type of foldLeft must be same type as the seed.
# foldLeft feeds the seed and the first element of the List, 1, into the function, which returns 1.
scala> List(,,,).foldLeft()(_ + _)
res15: Int =
scala> List("b","a","elwood","archer").foldLeft()(_ + _.length)
res19: Int =
Sometimes you may need to work with more than one collection at a time.
scala> val n =( to ).toList
n: List[Int] = List(, , )
scala> n.map(i => n.map(j => i * j))
res20: List[List[Int]] = List(List(, , ), List(, , ), List(, , ))
In order to nest the map operations but flatten the results of nested operations, we use flatMap method:
scala> n.flatMap(i => n.map(j => i * j))
res23: List[Int] = List(, , , , , , , , )
However , syntactically, nested map, flatMap, and filter can get ugly.
scala> def isOdd(int: Int) = int % ==
isOdd: (int: Int)Boolean
scala> def isEven(int: Int) = !isOdd(int)
isEven: (int: Int)Boolean
scala> val n = ( to ).toList
n: List[Int] = List(, , , , , , , , , )
scala> n.filter(isEven).flatMap(i => n.filter(isOdd).map(j => i * j))
res25: List[Int] = List(, , , , , , , , ...,, , , , , , , )
Using for comprehension, we can convert nested statements from the previous example into a syntactically pleasing statement.
scala> for{i <- n if isEven(i); j <- n if isOdd(j)} yield i * j
res31: List[Int] = List(, , , , , ..., , , , , , , , , , , )
6. Range
Ranges are often used to populate data structures, and to iterate over for loops.
scala> to
res32: scala.collection.immutable.Range.Inclusive = Range(, , , , , , , , , )
scala> until
res33: scala.collection.immutable.Range = Range(, , , , , , , , )
scala> to by
res34: scala.collection.immutable.Range = Range(, , , , )
scala> 'a' to 'c'
res35: scala.collection.immutable.NumericRange.Inclusive[Char] = NumericRange(a, b, c)
scala> val x = ( to ).toList
x: List[Int] = List(, , , , , , , , , )
7. Stream
A Stream is like a List, except that its elements are computed lazily. A Stream can be constructed with the #:: method, using Stream.Empty at the end of the expression instead of Nil.
# The number and a ? to denote the end of the stream because the end of the stream hasn't # been evaluated yet.
scala> val stream = #:: #:: #:: Stream.empty
stream: scala.collection.immutable.Stream[Int] = Stream(, ?)
# A Stream can be long ... infinitely long.
scala> val stream = ( to ).toStream
stream: scala.collection.immutable.Stream[Int] = Stream(, ?)
# You can attempt access the head and tail of the stream. The head is returned immediately. But the tail isn't evaluated yet
scala> stream.head
res37: Int =
scala> stream.tail
res38: scala.collection.immutable.Stream[Int] = Stream(, ?)
8. Tuples
scala> def sumSq(in: List[Double]):(Int, Double, Double) =
| in.foldLeft((,0d,0d))((t,v) => (t._1 + , t._2 + v, t._3 + v * v))
sumSq: (in: List[Double])(Int, Double, Double)
The compiler will treat a collection of elements in parentheses as a Tuple. We seed the foldLeft with (0, 0d, 0d), which the compiler translates to a Tuples[Int, Double, Double]. The param t is a Tuple3, and v is a Double.
Using pattern matching to make the code a little more readable:
scala> def sumSq(in: List[Double]): (Int, Double, Double) =
| in.foldLeft((, 0d, 0d)){
| case ((cnt,sum,sq), v) => (cnt +, sum + v, sq + v * v)}
sumSq: (in: List[Double])(Int, Double, Double)
Create Tuples:
scala> Tuple(,) == Pair(,)
res44: Boolean = true
scala> Pair(,) == (,)
res46: Boolean = true
scala> (,) == ( -> )
res49: Boolean = true
9. Map[K,V]
The default Scala Map class is immutable. This means that you can pass an instance of Map to another thread, and that thread can access the Map without synchronizing.
scala> var p = Map( -> "David", -> "Elwood")
p: scala.collection.immutable.Map[Int,java.lang.String] = Map( -> David, -> Elwood)
We create a new Map by passing a set of Pair[Int, String] to the Map object's apply method. We create a var p other than a val p. This because the Map is immutable, so when we alter the contents on the Map, we have to assign the new Map back to p.
# add an element
scala> p + ( -> "Archer")
res1: scala.collection.immutable.Map[Int,String] = Map( -> David, -> Elwood, -> Archer)
# didn't change the immutable Map
scala> p
res2: scala.collection.immutable.Map[Int,String] = Map( -> David, -> Elwood)
# update p
scala> p = p + ( -> "archer")
p: scala.collection.immutable.Map[Int,String] = Map( -> David, -> Elwood, -> archer)
# get element out of the Map
scala> p()
res5: String = Elwood
# Key not found
scala> p()
java.util.NoSuchElementException: key not found:
The get() Method on Map returns an Option(Some or Not) that contains the result:
scala> p.get()
res7: Option[String] = None
scala> p.get()
res8: Option[String] = Some(Elwood)
You can return a default value if the key not found:
scala> p.getOrElse(,"Nobody")
res9: String = Nobody
scala> p.getOrElse(,"Nobody")
res11: String = David
scala> to flatMap(p.get)
res13: scala.collection.immutable.IndexedSeq[String] = Vector(David, Elwood)
# remove elements
scala> p -=
scala> p
res16: scala.collection.immutable.Map[Int,String] = Map( -> Elwood, -> Archer)
# check if Map contains a particular key
scala> p.contains()
res17: Boolean = true
# find the largest key
scala> p.keys.reduceLeft(_ max _)
res18: Int =
# find the largest String
scala> p.values.reduceLeft((a,b) => if (a>b) a else b)
res19: String = Elwood
# value contains the letter "z"
scala> p.values.exists(_.contains("z"))
res21: Boolean = false
# add a bunch of elements using the ++ mthod
scala> p ++= List( -> "Cat", -> "Dog")
scala> p
res23: scala.collection.immutable.Map[Int,String] = Map( -> Elwood, -> Archer, -> Cat, -> Dog)
# remove a bunch of keys with the – metod
scala> p --= List(,)
scala> p
res25: scala.collection.immutable.Map[Int,String] = Map( -> Elwood, -> Cat)
# a simpler way to remove unwanted elements from a Map
def removeInvalid(in: Map[Int, Person]) = in.filter(kv => kv._2.valid)
10. Mutable Collections
The immutable collections can be transformed into new collections.
scala> val immutableMap = Map( -> "a", -> "b", -> "c")
immutableMap: scala.collection.immutable.Map[Int,java.lang.String] = Map( -> a, -> b, -> c)
scala> val newMap = immutableMap - + ( -> "d")
newMap: scala.collection.immutable.Map[Int,java.lang.String] = Map( -> b, -> c, -> d)
# The original collection
scala> immutableMap
res0: scala.collection.immutable.Map[Int,java.lang.String] = Map( -> a, -> b, -> c)
The List, Map and Set immutable collections can all be converted to the collection.mutable.Buffer type with the toBuffer method.
scala> val m = Map( -> "a", -> "b")
m: scala.collection.immutable.Map[Int,java.lang.String] = Map( -> a, -> b)
scala> val b = m.toBuffer
b: scala.collection.mutable.Buffer[(Int, java.lang.String)] = ArrayBuffer((,a), (,b))
# The map, containing key-value pairs, is now a sequence of tuples.
scala> b += ( -> "c")
res1: b.type = ArrayBuffer((,a), (,b), (,c))
# changing the buffer to map again
scala> val newMap = b.toMap
newMap: scala.collection.immutable.Map[Int,java.lang.String] = Map( -> a, -> b, -> c)
11. Mutable Queue
A queue is FIFO data structure. You can create an empty, mutable queue of any data type. Remind that make sure to include the full package name for the type.
# create a Queue
scala> import scala.collection.mutable.Queue
import scala.collection.mutable.Queue
scala> var ints = Queue[Int]()
ints: scala.collection.mutable.Queue[Int] = Queue()
Add elements to it using +=, ++= and enqueue
# add elements to the Queue
scala> ints +=
res2: scala.collection.mutable.Queue[Int] = Queue()
scala> ints += (,)
res3: scala.collection.mutable.Queue[Int] = Queue(, , )
scala> ints ++= Queue(,)
res5: scala.collection.mutable.Queue[Int] = Queue(, , , , )
# use enqueue
scala> ints.enqueue(,)
scala> ints
res15: scala.collection.mutable.Queue[Int] = Queue(, , , ,,,)
You typically remove elements from the head of the queue, one element at a time, using dequeue.
scala> ints.dequeue
res18: Int =
scala> ints
res19: scala.collection.mutable.Queue[Int] = Queue(, , , )
Queue extends from Iterable and Traversable, so it has all the usual collection methods, including foreach, map and so on.
12. Mutable Stack
A Stack is a LIFO data structure.
# create a Stack
scala> import scala.collection.mutable.Stack
import scala.collection.mutable.Stack
scala> var ints = Stack[Int]()
ints: scala.collection.mutable.Stack[Int] = Stack()
scala> val ints = Stack(,,)
ints: scala.collection.mutable.Stack[Int] = Stack(, , )
# push elements onto the stack with push
scala> ints.push()
res20: ints.type = Stack(, , , )
scala> ints.push(,,)
res21: ints.type = Stack(, , , , , , ) # To take elements off the stack, pop them off the top of the stack
scala> val lastele = ints.pop
lastele: Int =
Beginning Scala study note(6) Scala Collections的更多相关文章
- Beginning Scala study note(9) Scala and Java Interoperability
1. Translating Java Classes to Scala Classes Example 1: # a class declaration in Java public class B ...
- Beginning Scala study note(8) Scala Type System
1. Unified Type System Scala has a unified type system, enclosed by the type Any at the top of the h ...
- Beginning Scala study note(3) Object Orientation in Scala
1. The three principles of OOP are encapsulation(封装性), inheritance(继承性) and polymorphism(多态性). examp ...
- Beginning Scala study note(2) Basics of Scala
1. Variables (1) Three ways to define variables: 1) val refers to define an immutable variable; scal ...
- Beginning Scala study note(4) Functional Programming in Scala
1. Functional programming treats computation as the evaluation of mathematical and avoids state and ...
- Beginning Scala study note(1) Geting Started with Scala
1. Scala is a contraction of "scalable" and "language". It's a fusion of objecte ...
- Beginning Scala study note(7) Trait
A trait provides code reusability in Scala by encapsulating method and state and then offing possibi ...
- Beginning Scala study note(5) Pattern Matching
The basic functional cornerstones of Scala: immutable data types, passing of functions as parameters ...
- Scala进阶之路-Scala中的Ordered--Ordering
Scala进阶之路-Scala中的Ordered--Ordering 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 说道对象的比较,在Java中大家最熟悉不过的就是实现类本身实 ...
随机推荐
- angularjs之Restangular用法
参考资料: angularjs 获取服务端口数据的方法(三种) 学习-[前端]-angularjs基本框架以及向服务器发送请求的方法 Restangular on Angular
- 思考JavaScript异常如何转为知识库?
线上 js 报错会变成一个邮件,发给前端开发 team,每个人自己认领.解决.其实这是一个不错的选择,也解决了最基本的问题:立即响应,修掉.不过也存在着一个问题,如何避免同样的错误?我的初步想法是这样 ...
- tomcat server.xml中文版
原文:http://www.blogjava.net/baoyaer/articles/107278.html Tomcat Server的结构图 该文件描述了如何启动Tomcat Server &l ...
- PV、EV、AC、BAC、EAC、ETC等计算公式含义
PV.EV.AC.BAC.EAC.ETC等计算公式含义 PV Planned Value:计划值 应该完成多少工作, (按照计划截止目前应该花费的预算) AC Actual Cost:实际成本, 完成 ...
- PHP错误以及异常处理
以前一直觉得php的异常处理没有什么,现在才发现这个还真是门学问,于是狠下心来好好研究了一下,写一篇文章,也作备忘吧. 1. php错误 无论是什么语言编程,都会有如下三种错误,当然php也不例外. ...
- 优先队列实现Huffman编码
首先把所有的字符加入到优先队列,然后每次弹出两个结点,用这两个结点作为左右孩子,构造一个子树,子树的跟结点的权值为左右孩子的权值的和,然后将子树插入到优先队列,重复这个步骤,直到优先队列中只有一个结点 ...
- 二刷Cracking the Coding Interview(CC150第五版)
第18章---高度难题 1,-------另类加法.实现加法. 另类加法 参与人数:327时间限制:3秒空间限制:32768K 算法知识视频讲解 题目描述 请编写一个函数,将两个数字相加.不得使用+或 ...
- C#操作access和SQL server数据库代码实例
在C#的学习中,操作数据库是比较常用的技术,而access和sql server 数据库的操作却有着不同.那么,有哪些不同呢? 首先,需要引用不同的类.因为有着不同的数据引擎. access:usin ...
- erlang 虚机性能调优
erlang 默认启动参数更多的是针对电信平台实时特性,简单调整参数能很大程度降低CPU消耗,提高处理能力. 1. 关闭spin_wait 设置参数:+sbwt none 我上一篇文章提到:erlan ...
- Python3.4下安装pip和MySQLdb
想用pyhton3.4做数据分析,pip和MySQLdb是必要的,一个便于安装常用模块,一个用来操作数据库.当时安装这两个模块时,由于没有人指导,花了很多的时间才安装好. 安装pip时,按照网上的教程 ...