地址:https://nanti.jisuanke.com/t/17314

题目:

Three circles C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​, all with radius RR and tangent to each other, are located in two-dimensional space as shown in Figure 11. A smaller circle C_{1}C​1​​ with radius R_{1}R​1​​ (R_{1}<RR​1​​<R) is then inserted into the blank area bounded by C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​ so that C_{1}C​1​​ is tangent to the three outer circles, C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​. Now, we keep inserting a number of smaller and smaller circles C_{k}\ (2 \leq k \leq N)C​k​​ (2≤k≤N) with the corresponding radius R_{k}R​k​​ into the blank area bounded by C_{a}C​a​​, C_{c}C​c​​ and C_{k-1}C​k−1​​ (2 \leq k \leq N)(2≤k≤N), so that every time when the insertion occurs, the inserted circle C_{k}C​k​​ is always tangent to the three outer circles C_{a}C​a​​, C_{c}C​c​​ and C_{k-1}C​k−1​​, as shown in Figure 11

Figure 1.

(Left) Inserting a smaller circle C_{1}C​1​​ into a blank area bounded by the circle C_{a}C​a​​, C_{b}C​b​​ and C_{c}C​c​​.

(Right) An enlarged view of inserting a smaller and smaller circle C_{k}C​k​​ into a blank area bounded by C_{a}C​a​​, C_{c}C​c​​ and C_{k-1}C​k−1​​ (2 \leq k \leq N2≤k≤N), so that the inserted circle C_{k}C​k​​ is always tangent to the three outer circles, C_{a}C​a​​, C_{c}C​c​​, and C_{k-1}C​k−1​​.

Now, given the parameters RR and kk, please write a program to calculate the value of R_{k}R​k​​, i.e., the radius of the k-thk−th inserted circle. Please note that since the value of R_kR​k​​ may not be an integer, you only need to report the integer part of R_{k}R​k​​. For example, if you find that R_{k}R​k​​ = 1259.89981259.8998 for some kk, then the answer you should report is 12591259.

Another example, if R_{k}R​k​​ = 39.102939.1029 for some kk, then the answer you should report is 3939.

Assume that the total number of the inserted circles is no more than 1010, i.e., N \leq 10N≤10. Furthermore, you may assume \pi = 3.14159π=3.14159. The range of each parameter is as below:

1 \leq k \leq N1≤k≤N, and 10^{4} \leq R \leq 10^{7}10​4​​≤R≤10​7​​.

Input Format

Contains l + 3l+3 lines.

Line 11: ll ----------------- the number of test cases, ll is an integer.

Line 22: RR ---------------- RR is a an integer followed by a decimal point,then followed by a digit.

Line 33: kk ---------------- test case #11, kk is an integer.

\ldots…

Line i+2i+2: kk ----------------- test case # ii.

\ldots…

Line l +2l+2: kk ------------ test case #ll.

Line l + 3l+3: -1−1 ---------- a constant -1−1 representing the end of the input file.

Output Format

Contains ll lines.

Line 11: kk R_{k}R​k​​ ----------------output for the value of kk and R_{k}R​k​​ at the test case #11, each of which should be separated by a blank.

\ldots…

Line ii: kk R_{k}R​k​​ ----------------output for kk and the value of R_{k}R​k​​ at the test case # ii, each of which should be separated by a blank.

Line ll: kk R_{k}R​k​​ ----------------output for kk and the value ofR_{k}R​k​​ at the test case # ll, each of which should be separated by a blank.

样例输入

1
152973.6
1
-1

样例输出

1 23665

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

思路:

  圆的反演。

  很容易想到把上面两大圆的切点作为反演中心,这样会得到下图。

  绿色的是反演前的圆,黄色的是反演后的图形,两个大圆成了平行直线,下面的大圆成了直线间的小圆,后面添加的圆都在这个小圆的下面。

  所以求出小圆的圆心的y即可,然后反演回去可以得到半径。

 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double PI=acos(-1.0);
const int K=1e6+;
const int mod=1e9+; int main(void)
{
double r,x,y,ls,dis,ans[];
int t;
cin>>t>>r;
x=0.5*r,ls=-0.5*sqrt(3.0)*r;
dis=x*x+ls*ls;
ls=ls/dis;
r=1.0/(*r);
for(int i=;i<=;i++)
{
y=ls-r*;
ans[i]=0.5*(1.0/(y-r)-1.0/(y+r));
ls=y;
}
for(int i=,k;i<=t;i++)
scanf("%d",&k),printf("%d %d\n",k,(int)ans[k]);
return ;
}

G.Finding the Radius for an Inserted Circle 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛的更多相关文章

  1. 【计算几何】【圆反演】计蒜客17314 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 G. Finding the Radius for an Inserted Circle

    题意:给你三个半径相同的圆,它们切在一起,然后让你往缝里一个一个地塞圆,问你塞到第k个的半径是多少. 就把上面那两个圆的切点当成反演中心,然后会反演成这个样子,两个平行直线和一个圆. 然后就是往那个圆 ...

  2. ACM ICPC 2018 青岛赛区 部分金牌题题解(K,L,I,G)

     目录: K Airdrop I Soldier Game L Sub-cycle Graph G Repair the Artwork ———————————————————— ps:楼主脑残有点严 ...

  3. hdu 4046 2011北京赛区网络赛G 线段树 ***

    还带这么做的,卧槽,15分钟就被A了的题,居然没搞出来 若某位是1,则前两个为wb,这位就是w #include<cstdio> #include<cstring> #defi ...

  4. hdu 4027 2011上海赛区网络赛G 线段树 成段平方根 ***

    不能直接使用成段增减的那种,因为一段和的平方根不等于平方根的和,直接记录是否为1,是1就不需要更新了 #include<cstdio> #include<iostream> # ...

  5. 2017 ACM/ICPC 沈阳 G题 Infinite Fraction Path

    The ant Welly now dedicates himself to urban infrastructure. He came to the kingdom of numbers and s ...

  6. ACM ICPC 2015 Moscow Subregional Russia, Moscow, Dolgoprudny, October, 18, 2015 G. Garden Gathering

    Problem G. Garden Gathering Input file: standard input Output file: standard output Time limit: 3 se ...

  7. 2016ACM/ICPC亚洲区沈阳站 - A/B/C/E/G/H/I - (Undone)

    链接:传送门 A - Thickest Burger - [签到水题] ACM ICPC is launching a thick burger. The thickness (or the heig ...

  8. HDU 4733 G(x) (2013成都网络赛,递推)

    G(x) Time Limit: 2000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

随机推荐

  1. docker images 详解

    docker images 用于查看本地已下载的镜像 [root@localhost ~]$ docker images REPOSITORY TAG IMAGE ID CREATED SIZE ce ...

  2. 通过Nagios监控weblogic服务

    1.前言      前段时间搭建了一套Nagios监控服务,心血来潮想自己写一个脚本,拓展Nagios插件来监控公司的weblogic服务. 环境:weblogic10.3.3.0 . CentOS6 ...

  3. ubuntu下code::blocks设置运行窗口为gnome命令行

    code::blocks编译运行C++程序(F9)默认出现的运行串口在有鼠标的情况下进行粘贴还是很方便的,只要按下鼠标滑轮,位与剪切板中的数据就能粘贴到运行串口中.但是对于用笔记本而且没有鼠标地童鞋这 ...

  4. 96、facebook Fresco框架库源使用(转载)

    各个属性详情:http://blog.csdn.net/y1scp/article/details/49245535 开源项目链接 facebook Fresco仓库:git clone https: ...

  5. c++11——lambda表达式

    lambda表达式 函数式编程的一个语法,有如下优点: (1)声明式编程风格:就地匿名定义目标函数或函数对象,不需要额外写一个命名函数或者函数对象.以更直接的方式写程序,好的可读性和可维护性. (2) ...

  6. linux 学习的一些书单,对了解android 也有大用

    要推荐的书,我在<那两年炼就的Android内功修养>这篇文章中有提到,这里再列一下出来: 语言类: <深度探索C++对象模型>,对应的英文版是<Inside C+++  ...

  7. POJ3259-负权回路判定

    题目:http://vj.acmclub.cn/contest/view.action?cid=316#problem/E 首先要理解题意:其实就是给你一个图让你判断有没有负权回路 因此直接用Ball ...

  8. shell 中的()【】{}(())

    本文转自:https://blog.csdn.net/taiyang1987912/article/details/39551385 shell中各种括号的作用().(()).[].[[]].{} 一 ...

  9. [分享]收集的Linux学习资源

    下面是我收集的一些Linux资源,与大家分享.大家共同学习,一起进步. 国内的专业Linux网站(GB) 1. ChinaUnix:http://www.chinaunix.net/ 2. Linux ...

  10. ios8 gps定位不好用

    这样让iOS8正常使用定位功能呢? <1>你需要在info.plist表里面添加两条变量 在Info.plist中加入两个缺省没有的字段 NSLocationAlwaysUsageDesc ...