地址:https://nanti.jisuanke.com/t/17314

题目:

Three circles C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​, all with radius RR and tangent to each other, are located in two-dimensional space as shown in Figure 11. A smaller circle C_{1}C​1​​ with radius R_{1}R​1​​ (R_{1}<RR​1​​<R) is then inserted into the blank area bounded by C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​ so that C_{1}C​1​​ is tangent to the three outer circles, C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​. Now, we keep inserting a number of smaller and smaller circles C_{k}\ (2 \leq k \leq N)C​k​​ (2≤k≤N) with the corresponding radius R_{k}R​k​​ into the blank area bounded by C_{a}C​a​​, C_{c}C​c​​ and C_{k-1}C​k−1​​ (2 \leq k \leq N)(2≤k≤N), so that every time when the insertion occurs, the inserted circle C_{k}C​k​​ is always tangent to the three outer circles C_{a}C​a​​, C_{c}C​c​​ and C_{k-1}C​k−1​​, as shown in Figure 11

Figure 1.

(Left) Inserting a smaller circle C_{1}C​1​​ into a blank area bounded by the circle C_{a}C​a​​, C_{b}C​b​​ and C_{c}C​c​​.

(Right) An enlarged view of inserting a smaller and smaller circle C_{k}C​k​​ into a blank area bounded by C_{a}C​a​​, C_{c}C​c​​ and C_{k-1}C​k−1​​ (2 \leq k \leq N2≤k≤N), so that the inserted circle C_{k}C​k​​ is always tangent to the three outer circles, C_{a}C​a​​, C_{c}C​c​​, and C_{k-1}C​k−1​​.

Now, given the parameters RR and kk, please write a program to calculate the value of R_{k}R​k​​, i.e., the radius of the k-thk−th inserted circle. Please note that since the value of R_kR​k​​ may not be an integer, you only need to report the integer part of R_{k}R​k​​. For example, if you find that R_{k}R​k​​ = 1259.89981259.8998 for some kk, then the answer you should report is 12591259.

Another example, if R_{k}R​k​​ = 39.102939.1029 for some kk, then the answer you should report is 3939.

Assume that the total number of the inserted circles is no more than 1010, i.e., N \leq 10N≤10. Furthermore, you may assume \pi = 3.14159π=3.14159. The range of each parameter is as below:

1 \leq k \leq N1≤k≤N, and 10^{4} \leq R \leq 10^{7}10​4​​≤R≤10​7​​.

Input Format

Contains l + 3l+3 lines.

Line 11: ll ----------------- the number of test cases, ll is an integer.

Line 22: RR ---------------- RR is a an integer followed by a decimal point,then followed by a digit.

Line 33: kk ---------------- test case #11, kk is an integer.

\ldots…

Line i+2i+2: kk ----------------- test case # ii.

\ldots…

Line l +2l+2: kk ------------ test case #ll.

Line l + 3l+3: -1−1 ---------- a constant -1−1 representing the end of the input file.

Output Format

Contains ll lines.

Line 11: kk R_{k}R​k​​ ----------------output for the value of kk and R_{k}R​k​​ at the test case #11, each of which should be separated by a blank.

\ldots…

Line ii: kk R_{k}R​k​​ ----------------output for kk and the value of R_{k}R​k​​ at the test case # ii, each of which should be separated by a blank.

Line ll: kk R_{k}R​k​​ ----------------output for kk and the value ofR_{k}R​k​​ at the test case # ll, each of which should be separated by a blank.

样例输入

1
152973.6
1
-1

样例输出

1 23665

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

思路:

  圆的反演。

  很容易想到把上面两大圆的切点作为反演中心,这样会得到下图。

  绿色的是反演前的圆,黄色的是反演后的图形,两个大圆成了平行直线,下面的大圆成了直线间的小圆,后面添加的圆都在这个小圆的下面。

  所以求出小圆的圆心的y即可,然后反演回去可以得到半径。

 #include <bits/stdc++.h>

 using namespace std;

 #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double PI=acos(-1.0);
const int K=1e6+;
const int mod=1e9+; int main(void)
{
double r,x,y,ls,dis,ans[];
int t;
cin>>t>>r;
x=0.5*r,ls=-0.5*sqrt(3.0)*r;
dis=x*x+ls*ls;
ls=ls/dis;
r=1.0/(*r);
for(int i=;i<=;i++)
{
y=ls-r*;
ans[i]=0.5*(1.0/(y-r)-1.0/(y+r));
ls=y;
}
for(int i=,k;i<=t;i++)
scanf("%d",&k),printf("%d %d\n",k,(int)ans[k]);
return ;
}

G.Finding the Radius for an Inserted Circle 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛的更多相关文章

  1. 【计算几何】【圆反演】计蒜客17314 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 G. Finding the Radius for an Inserted Circle

    题意:给你三个半径相同的圆,它们切在一起,然后让你往缝里一个一个地塞圆,问你塞到第k个的半径是多少. 就把上面那两个圆的切点当成反演中心,然后会反演成这个样子,两个平行直线和一个圆. 然后就是往那个圆 ...

  2. ACM ICPC 2018 青岛赛区 部分金牌题题解(K,L,I,G)

     目录: K Airdrop I Soldier Game L Sub-cycle Graph G Repair the Artwork ———————————————————— ps:楼主脑残有点严 ...

  3. hdu 4046 2011北京赛区网络赛G 线段树 ***

    还带这么做的,卧槽,15分钟就被A了的题,居然没搞出来 若某位是1,则前两个为wb,这位就是w #include<cstdio> #include<cstring> #defi ...

  4. hdu 4027 2011上海赛区网络赛G 线段树 成段平方根 ***

    不能直接使用成段增减的那种,因为一段和的平方根不等于平方根的和,直接记录是否为1,是1就不需要更新了 #include<cstdio> #include<iostream> # ...

  5. 2017 ACM/ICPC 沈阳 G题 Infinite Fraction Path

    The ant Welly now dedicates himself to urban infrastructure. He came to the kingdom of numbers and s ...

  6. ACM ICPC 2015 Moscow Subregional Russia, Moscow, Dolgoprudny, October, 18, 2015 G. Garden Gathering

    Problem G. Garden Gathering Input file: standard input Output file: standard output Time limit: 3 se ...

  7. 2016ACM/ICPC亚洲区沈阳站 - A/B/C/E/G/H/I - (Undone)

    链接:传送门 A - Thickest Burger - [签到水题] ACM ICPC is launching a thick burger. The thickness (or the heig ...

  8. HDU 4733 G(x) (2013成都网络赛,递推)

    G(x) Time Limit: 2000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

随机推荐

  1. Android Timer的应用示例

    package com.hyzhou.timerdemo1; import java.util.Timer; import java.util.TimerTask; import android.os ...

  2. ftp简单命令

    1.连接ftp ftp 192.168.10.15 进去后输入用户名 ,然后再输入密码,就这样登陆成功了,你会看到 ftp> 2.进入ftp后,你对目录需要切换操作.和linux一样的命令.cd ...

  3. Topic 与 Partition

    Topic在逻辑上可以被认为是一个queue队列,每条消息都必须指定它的topic,可以简单理解为必须指明把这条消息放进哪个queue里.为 了使得Kafka的吞吐率可以水平扩展,物理上把topic分 ...

  4. Qt选择文件对话框-中文路径-转std::string

    #include <QFileDialog>#pragma execution_character_set("utf-8") QString path = QFileD ...

  5. 盒子模型 W3C中和IE中盒子的总宽度分别是什么

    W3C盒模型 总宽度 = margin-left + border-left + padding-left + width + padding-right + border-right + margi ...

  6. uiimageview 异步加载图片

    dispatch_async(dispatch_get_global_queue( DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^(void){ NSURL *url = ...

  7. Mybatis中的foreach

    <delete id="deleteByParam"> DELETE FROM YZ_SECURITIES_CURRENCY WHERE ID IN <forea ...

  8. mac下搭建cocos2d-x2.2.1版本android编译环境教程

    首先我们先以引擎2.2.1为例子来新建一个TestJni的项目,来作为测试例. 创建方式如下: python create_project.py -project TestJni -package o ...

  9. java基础---->java中国际化的实现

    应用程序的功能和代码设计考虑在不同地区运行的需要,其代码简化了不同本地版本的生产.开发这样的程序的过程,就称为国际化.今天,我们就开始学习java中国际化的代码实现. Java国际化主要通过如下3个类 ...

  10. java基础---->验证码的使用(一)

    验证码是一种区分用户是计算机和人的公共全自动程序.可以防止:恶意破解密码.刷票.论坛灌水,有效防止某个黑客对某一个特定注册用户用特定程序暴力破解方式进行不断的登陆尝试,实际上是用验证码是现在很多网站通 ...