MapReduce 过程详解 (用WordCount作为例子)
本文转自 http://www.cnblogs.com/npumenglei/
....
先创建两个文本文件, 作为我们例子的输入:
File 1 内容:
My name is Tony
My company is pivotal
File 2 内容:
My name is Lisa
My company is EMC
1. 第一步, Map
顾名思义, Map 就是拆解.
首先我们的输入就是两个文件, 默认情况下就是两个split, 对应前面图中的split 0, split 1
两个split 默认会分给两个Mapper来处理, WordCount例子相当地暴力, 这一步里面就是直接把文件内容分解为单词和 1 (注意, 不是具体数量, 就是数字1)其中的单词就是我们的主健,也称为Key, 后面的数字就是对应的值,也称为value.
那么对应两个Mapper的输出就是:
split 0
My 1
name 1
is 1
Tony 1
My 1
company 1
is 1
Pivotal 1
split 1
My 1
name 1
is 1
Lisa 1
My 1
company 1
is 1
EMC 1
2. Partition
Partition 是什么? Partition 就是分区。
为什么要分区? 因为有时候会有多个Reducer, Partition就是提前对输入进行处理, 根据将来的Reducer进行分区. 到时候Reducer处理的时候, 只需要处理分给自己的数据就可以了。
如何分区? 主要的分区方法就是按照Key 的不同,把数据分开,其中很重要的一点就是要保证Key的唯一性, 因为将来做Reduce的时候有可能是在不同的节点上做的, 如果一个Key同时存在于两个节点上, Reduce的结果就会出问题, 所以很常见的Partition方法就是哈希。
结合我们的例子, 我们这里假设有两个Reducer, 前面两个split 做完Partition的结果就会如下:
split 0
Partition 1:
company 1
is 1
is 1
Partition 2:
My 1
My 1
name 1
Pivotal 1
Tony 1
split 1
Partition 1:
company 1
is 1
is 1
EMC 1
Partition 2:
My 1
My 1
name 1
Lisa 1
其中Partition 1 将来是准备给Reducer 1 处理的, Partition 2 是给Reducer 2 的
这里我们可以看到, Partition 只是把所有的条目按照Key 分了一下区, 没有其他任何处理, 每个区里面的Key 都不会出现在另外一个区里面。
3. Sort
Sort 就是排序喽, 其实这个过程在我来看并不是必须的, 完全可以交给客户自己的程序来处理。 那为什么还要排序呢? 可能是写MapReduce的大牛们想,“大部分reduce 程序应该都希望输入的是已经按Key排序好的数据, 如果是这样, 那我们就干脆顺手帮你做掉啦, 请叫我雷锋!” ......好吧, 你是雷锋.
那么我们假设对前面的数据再进行排序, 结果如下:
split 0
Partition 1:
company 1
is 1
is 1
Partition 2:
My 1
My 1
name 1
Pivotal 1
Tony 1
split 1
Partition 1:
company 1
EMC 1
is 1
is 1
Partition 2:
Lisa 1
My 1
My 1
name 1
这里可以看到, 每个partition里面的条目都按照Key的顺序做了排序
4. Combine
什么是Combine呢? Combine 其实可以理解为一个mini Reduce 过程, 它发生在前面Map的输出结果之后, 目的就是在结果送到Reducer之前先对其进行一次计算, 以减少文件的大小, 方便后面的传输。 但这步也不是必须的。
按照前面的输出, 执行Combine:
split 0
Partition 1:
company 1
is 2
Partition 2:
My 2
name 1
Pivotal 1
Tony 1
split 1
Partition 1:
company 1
EMC 1
is 2
Partition 2:
Lisa 1
My 2
name 1
我们可以看到, 针对前面的输出结果, 我们已经局部地统计了is 和My的出现频率, 减少了输出文件的大小。
5. Copy
下面就要准备把输出结果传送给Reducer了。 这个阶段被称为Copy, 但事实上雷子认为叫他Download更为合适, 因为实现的时候, 是通过http的方式, 由Reducer节点向各个mapper节点下载属于自己分区的数据。
那么根据前面的Partition, 下载完的结果如下:
Reducer 节点 1 共包含两个文件:
Partition 1:
company 1
is 2
Partition 1:
company 1
EMC 1
is 2
Reducer 节点 2 也是两个文件:
Partition 2:
My 2
name 1
Pivotal 1
Tony 1
Partition 2:
Lisa 1
My 2
name 1
这里可以看到, 通过Copy, 相同Partition 的数据落到了同一个节点上。
6. Merge
如上一步所示, 此时Reducer得到的文件是从不同Mapper那里下载到的, 需要对他们进行合并为一个文件, 所以下面这一步就是Merge, 结果如下:
Reducer 节点 1
company 1
company 1
EMC 1
is 2
is 2
Reducer 节点 2
Lisa 1
My 2
My 2
name 1
name 1
Pivotal 1
Tony 1
7. Reduce
终于可以进行最后的Reduce 啦...这步相当简单喽, 根据每个文件中的内容最后做一次统计, 结果如下:
Reducer 节点 1
company 2
EMC 1
is 4
Reducer 节点 2
Lisa 1
My 4
name 2
Pivotal 1
Tony 1
至此大功告成! 我们成功统计出两个文件里面每个单词的数目, 同时把它们存入到两个输出文件中, 这两个输出文件也就是传说中的 part-r-00000 和 part-r-00001, 看看两个文件的内容, 再回头想想最开始的Partition, 应该是清楚了其中的奥秘吧。
如果你在你自己的环境中运行的WordCount只有part-r-00000一个文件的话, 那应该是因为你使用的是默认设置, 默认一个job只有一个reducer
如果你想设两个, 你可以:
1. 在源代码中加入 job.setNumReduceTasks(2), 设置这个job的Reducer为两个
或者
2. 在 mapred-site.xml 中设置下面参数并重启服务
<property>
<name>mapred.reduce.tasks</name>
<value>2</value>
</property>
这样, 整个集群都会默认使用两个Reducer
结束语:
本文大致描述了一下MapReduce的整个过程以及每个阶段所作的事情, 并没有涉及具体的job,resource的管理和控制, 因为那个是第一代MapReduce框架和Yarn框架的主要区别。 而两代框架中上述MapReduce 的原理是差不多的,希望对大家有所帮助。
MapReduce 过程详解 (用WordCount作为例子)的更多相关文章
- Hadoop MapReduce执行过程详解(带hadoop例子)
https://my.oschina.net/itblog/blog/275294 摘要: 本文通过一个例子,详细介绍Hadoop 的 MapReduce过程. 分析MapReduce执行过程 Map ...
- MapReduce 过程详解
Hadoop 越来越火, 围绕Hadoop的子项目更是增长迅速, 光Apache官网上列出来的就十几个, 但是万变不离其宗, 大部分项目都是基于Hadoop common MapReduce 更是核心 ...
- MapReduce过程详解(基于hadoop2.x架构)
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapredu ...
- MapReduce过程详解及其性能优化
http://blog.csdn.net/aijiudu/article/details/72353510 废话不说直接来一张图如下: 从JVM的角度看Map和Reduce Map阶段包括: 第一读数 ...
- Hadoop Mapreduce分区、分组、二次排序过程详解[转]
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动 (1)最简单的过程: map - reduce (2) ...
- Hadoop学习之Mapreduce执行过程详解
一.MapReduce执行过程 MapReduce运行时,首先通过Map读取HDFS中的数据,然后经过拆分,将每个文件中的每行数据分拆成键值对,最后输出作为Reduce的输入,大体执行流程如下图所示: ...
- Mysql加锁过程详解(6)-数据库隔离级别(2)-通过例子理解事务的4种隔离级别
Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...
- mapreduce框架详解
hadoop 学习笔记:mapreduce框架详解 开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感 ...
- Java 序列化Serializable详解(附详细例子)
Java 序列化Serializable详解(附详细例子) 1.什么是序列化和反序列化 Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization ...
随机推荐
- 导入google地图
一直报地图页面的 java.lang.incompatibleclasschangeerror 想来想去,应该是包不兼容的原因,原本以为,在 build.gradle 里面 compileSdkVer ...
- React如何进行事件传参
今天在学习React的es6语法的时候,发现了个有趣的现象,就是this的指向问题.es6的this不同于es5,它在创立函数伊始便已经存在了,而不是像es5一样,睡调用的函数,this指向谁.但是这 ...
- win10下安装Oracle 11g 32位客户端遇到INS-13001环境不满足最低要求
在以管理员身份运行setup.exe之后,出现了:[INS-13001]环境不满足最低要求,通过网上搜索之后找到了解决途径 首先,打开你的解压后的database文件夹,找到stage,然后cvu,找 ...
- go的临时对象池--sync.Pool
作者:bigtom链接:https://www.jianshu.com/p/2bd41a8f2254來源:简书 一个sync.Pool对象就是一组临时对象的集合.Pool是协程安全的. Pool用 ...
- AndroidWear开发之HelloWorld篇
通过前一篇的学习,我们把环境都搭建好了,这下我们就可以正真的开发了. 一.创建Wear项目 通过项目创建向导一步一步下去就可以创建好一个Wear项目: 1.新建项目,一次填入应用名字,应用包名,项目位 ...
- js插件---->jquery通知插件toastr的使用
toastr是一款非常棒的基于jquery库的非阻塞通知提示插件,toastr可设定四种通知模式:成功,出错,警告,提示,而提示窗口的位置,动画效果都可以通过能数来设置.toastr需要jquery的 ...
- ubuntu14.04 LTS 搜狗输入法安装和不能输入中文的解决方法
搜狗输入法安装 1.首先通过Ubuntu软件中心,需要安装:fcitx https://pinyin.sogou.com/linux/help.php 2.然后再安装搜狗输入法包 https://pi ...
- nutch 1.7导入Eclipse
1.下载Nutch1.7的包 apache-nutch-1.7-src.zip,解压之后应该包括 bin,conf,src等目录 2.将解压之后的 apache-nutch-1.7 文件夹放到ecli ...
- 在RES.web.Html5VersionController废弃后,如何做版本管理
在之前的版本,可以通过重写Html5VersionController, 在游戏一次更新后,增加v版本号,来达到修改每次加载的png.mp3.json等文件的url不同,来解决缓存的问题. 这样的好处 ...
- Swift - 触摸事件响应机制(UiView事件传递)
import UIKit class FatherView: UIView { override func hitTest(point: CGPoint, withEvent event: UIEve ...