[抄题]:

There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

Example:

Input: [[1,5,3],[2,9,4]]
Output: 5
Explanation: Paint house 0 into color 0, paint house 1 into color 2. Minimum cost: 1 + 4 = 5;
  Or paint house 0 into color 2, paint house 1 into color 0. Minimum cost: 3 + 2 = 5.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

k个颜色就不知道怎么办了:还是试啊 再套一层循环 一个个加

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

三重循环, s 和 j相等的时候就continue掉

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. i j是主变量,所以cost[i][j]都得用, dp[i][j]数组在不变的情况下就是它自己本身
dp[i][j] = Math.min(dp[i][j], dp[i - 1][s] + costs[i][j]);

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

所以cost[i][j]都得用, dp[i][j]数组在不变的情况下就是它自己本身

[复杂度]:Time complexity: O(n*k*k) Space complexity: O(n*k)

[算法思想:迭代/递归/分治/贪心]:

贪心

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int minCostII(int[][] costs) {
//cc
if (costs == null || costs.length == 0) return 0; //ini: dp[][], dp[0][k]
int n = costs.length, k = costs[0].length;
int[][] dp = new int[n][k];
for (int j = 0; j < k; j++) {
dp[0][j] = costs[0][j];
} //for loop: continue;
for (int i = 1; i < n; i++) {
for (int j = 0; j < k; j++) {
dp[i][j] = Integer.MAX_VALUE;
for (int s = 0; s < k; s++) {
if (s == j) continue;
dp[i][j] = Math.min(dp[i][j], dp[i - 1][s] + costs[i][j]);
}
}
} //return: compare each costs[i][k]
int res = Integer.MAX_VALUE;
for (int j = 0; j < k; j++) {
res = Math.min(res, dp[n - 1][j]);
} return res;
}
}

265. Paint House II 房子涂色K种选择的版本的更多相关文章

  1. leetcode 198. House Robber 、 213. House Robber II 、337. House Robber III 、256. Paint House(lintcode 515) 、265. Paint House II(lintcode 516) 、276. Paint Fence(lintcode 514)

    House Robber:不能相邻,求能获得的最大值 House Robber II:不能相邻且第一个和最后一个不能同时取,求能获得的最大值 House Robber III:二叉树下的不能相邻,求能 ...

  2. [leetcode]265. Paint House II粉刷房子(K色可选)

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  3. [LeetCode] 265. Paint House II 粉刷房子

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  4. [leetcode]256. Paint House粉刷房子(三色可选)

    There are a row of n houses, each house can be painted with one of the three colors: red, blue or gr ...

  5. 265. Paint House II

    题目: There are a row of n houses, each house can be painted with one of the k colors. The cost of pai ...

  6. [LeetCode#265] Paint House II

    Problem: There are a row of n houses, each house can be painted with one of the k colors. The cost o ...

  7. LC 265. Paint House II

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  8. [LeetCode] Paint House II 粉刷房子之二

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  9. 【BZOJ-1260】涂色paint 区间DP

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 1147  Solved: 698[Submit][Sta ...

随机推荐

  1. Redis入门简单操作

    一.下载安装 Linux下载服务器版本地址:https://redis.io/download Windows下载客户端Redis Desktop Manager:https://redisdeskt ...

  2. 经典排序方法 python

    数据的排序是在解决实际问题时经常用到的步骤,也是数据结构的考点之一,下面介绍10种经典的排序方法. 首先,排序方法可以大体分为插入排序.选择排序.交换排序.归并排序和桶排序四大类,其中,插入排序又分为 ...

  3. 《DSP using MATLAB》Problem 2.4

    生成并用stem函数画出这几个序列. 1.代码: %% ------------------------------------------------------------------------ ...

  4. TypeScript学习笔记(五) - 泛型

    本篇将介绍在TypeScript如何使用泛型. 一.泛型方法 在TypeScript里,声明泛型方法有以下两种方式: function generics_func1<T>(arg: T): ...

  5. HDU2888 Check Corners(二维RMQ)

    有一个矩阵,每次查询一个子矩阵,判断这个子矩阵的最大值是不是在这个子矩阵的四个角上 裸的二维RMQ #pragma comment(linker, "/STACK:1677721600&qu ...

  6. cratedb geo 查询

    cratedb支持的geo 查询还相对比较全,开发基本的功能已经够用了 安装cratedb 使用docker docker run -d -p 4200:4200 crate 创建数据库 创建表 CR ...

  7. jenkins初始化配置完后设置了管理员账号密码 网页停留时间长了刷新登录不了了

    好像陆陆续续在几台机子安装到最后正式使用的这台机器都是这样.难道是它自己本身的问题吗?只能网上帖子凑了. 找到.jenkins/config.xml文件:(windows环境就是和initialsec ...

  8. Autocad 2010+ObjectArx 2010 +Vs2010 的.net 开发设置(转)

    Autocad 2010+ObjectArx 2010 +Vs2010 的.net 开发设置 分类: ObjectArx.net2010-09-14 16:52 4203人阅读 评论(7) 收藏 举报 ...

  9. JSONHelp json解析成类,类解析成string

    using System; using System.Collections.Generic; using System.IO; using System.Runtime.Serialization. ...

  10. OpenLTE安装教程

    安装需求: USB3 interface Modern multicore CPU (Intel Core i5, Core i7 or equivalent with SSE4.1 SSE4.2 a ...